QCD measurements in pp collisions:

From the underlying event to jets

11th Edition of the Large Hadron Collider Physics Conference **10.03.2023**

Armando Bermúdez Martínez on behalf of the ALICE, LHCb, ATLAS and CMS collaborations

QCD at the LHC

How we approach the problem:

- Hard interaction
- PDFs, TMDs
- Parton Showers
- Multi Parton Interactions
- Fragmentation and Hadronization
- Beam remnants

How we challenge our theory framework:

- High presicion measurements of separate components
- Test the interplay between different regimes
- Discriminating between assumptions
- Constraints and input on models

The Hard Process

- Differential in y^Z , p_T^Z , ϕ^*_{η}
- $60 < m_{\mu\mu} < 120$ GeV, $p_T^{\mu} > 20$ GeV, $2 < \eta^{\mu} < 4.5$
- Data is compared to NLO and NNLO predictions
- Sensitive to quark PDF at low and high x
- Important test of pQCD at high p_T^z and TMD physics at low p_T^z

Z boson in association with charm

Phys. Rev. Lett. 128 (2022) 082001

- Fraction of c-jets as a function of y^z
- $20 < p_T^J < 100 \text{ GeV}$, $2.2 < \eta^J < 4.2$, $p_T^C > 5 \text{ GeV}$
- Probing intrinsic charm
- Sizable enhancement is observed at high y^z

arXiv:2301.09351

Transverse energy-energy correlations

- TEEC and ATEEC in multi-jet events in bins of H_{T2}
- NNLO corrections to 3-jet reduces systematics
- Sensitivity to hard QCD radiation and α_{S}
- Factorization formula in the limit $\phi \rightarrow 0$
- Best description by angular ordered shower
- Probing asymptotic freedom at the TeV scale

Multi-jet event isotropies

ATLAS-CONF-2022-056

$$1 - I_{\rm Ring}^{128} = 0.92$$

- Event isotropies quantify how far an event is from a symmetric radiation pattern
- Two-points, cylindrical and ring shapes
- $p_T > 60$ GeV, |y| < 4.4, bins: $N_{jets} \ge 2$, $N_{jets} \ge 5$, $H_{T2} > 500$, 1000, and 1500 GeV
- Infrared and collinear safe
- Very sensitive to isotropic events, large dynamic range
- Large difference between dipole and angular PS

Azimuthal correlations in Z+jets

arXiv:2210.16139

- Azimuthal correlations in bins of p_T^Z
- Sensitive to higher order corrections, resummation and MPI
- Collinear and TMD predictions compared to data
- MPI contribution significant, smaller for the dijet case
- MPI contribution from Pythia8 behaves as multiplicative factor

Multi-jet correlations and multiplicity

- Jet multiplicity as a function of azimuthal separation
- Sensitive to higher order corrections
- Collinear and TMD predictions compared to data
- Angular ordered predictions fail to describe large recoils with many jets

see talk by C. Savoiu

Multi-differential di-jet cross section CMS-PAS-SMP-21-008

- Differential dijet cross section
- Compared to NNLO in pQCD
- Sensitive to PDF and strong coupling
- Improved constraints on gluon PDFs at high x

Hard Process

Hard Process + Parton Shower

Dead cone effect

Nature 605, 7910 (2022): 440-446

- Ratio of splitting angle distributions for c-jets and inclusive jets
- Suppression of small angle emissions
- First direct observation of dead cone effect

Jet substructure in Z-tagged jets

arXiv:2208.11691

- Charged-hadron distributions as a function of hadron longitudinal momentum fraction, hadron p_T , and jet p_T
- Probing both the longitudinal and transverse profile
- Probing mass hierarchy in the hadronization process
- Constraints on TMD FFs in new phase space

PRL 124 (2020) 222002 Primary Lund Jet Plane

CMS-PAS-SMP-22-007

- 2D representation of 1 → 2 splitting phase space
- Different mechanisms are factorized
- Done in high p_T jets (700 GeV) to open up the phase space for evolution
- Soft- and hard-collinear region similarly described by angular- and pt-ordered showers
- Wide-angled well described by angular ordered PS
- Constraints on MC generators, improvements on jet tagging see talk by C. Savoiu

Hard Process + Parton Shower

Hard Process + Parton Shower + MPI

DPS in four jet events

JHEP01(2022)177

- Study of observables sensitive to DPS
- MPI important for describing measurements
- Δ S least sensitive to shower model, used to determine σ_{eff}
- Background modeling difficult especially when jets are present
- Need to improve the underlying models

Observables sensitive to CR

- Considerable freedom in MC generators, systematic source for m_{top}
- ttbar events in the dileptonic channel
- Study of charge multiplicity, and scalar sum of pT of charged particles
- CR is necessary to describe the data
- Interplay between number of MPI and CR
- Results are valuable input for better tuning of the MC generators

Hard Process + Parton Shower + MPI

Charm baryon-to-meson ratios

PLB 829 (2022) 137065

- First measurement of D_s^+/D_0 and Λ_c^+/D_0 in pp at 13 TeV
- Study the modification of fragmentation mechanism as environment changes
- D_s⁺/D₀ does not dependence on either pT or multiplicity
- Λ_{c}^{+}/D_{0} larger at high multiplicity
- Shape described by beyond-leading-color models
- Confirms limited validity of universality of fragmentation functions

Summary

- LHC provides unique environment to test QCD, from soft to very high p_T scales
- ATLAS, LHCb, ALICE and CMS have an innovative program to probe soft and hard QCD effects
- Very valuable input and constraints to theoretical models
- Wide variety of measurements recently made public by the large LHC experiments:

ALICE Public Results
LHCb Public Results
ATLAS Public Results
CMS Public Results

Publicly Available Parton Showers

	Evolution variable	Splitting variable	Coherence	
Ariadne	dipole p_{\perp}^2	Rapidity	$2 \rightarrow 3$ kernel	
Herwig	$E^2\theta^2$	Energy fraction	Ang. ord.	
Herwig++ / H7	$(t-m^2)/(z(1-z))$	LC mom. frac.	Ang. ord.	
	dipole $p_{\perp}^{2\prime}$	LC mom. frac.	$2 \rightarrow 3$ kernel	
Pythia 6	t	Energy fraction	Enforced	
Pythia 8	p_{\perp}^2	Energy fraction	Enforced	
Sherpa 1.1	t	Energy fraction	Enforced	
Sherpa ≥1.2	dipole- $p_{\perp}^{2\prime\prime}$	LC mom. frac.	$2 \rightarrow 3$ kernel	
Vincia	dipole- $p_{\perp}^{\overline{2'''}}$	LC mom. frac.	$2 \rightarrow 3$ kernel	
Dire	dipole- $p_{\perp}^{\overline{2''''}}$	LC mom. frac.	$2 \rightarrow 3$ kernel	

https://indico.cern.ch/event/829653/contributions/3568527/attachments/1946887/3230236/ps.pdf

Forward Z boson production

	A / [07]
Source	$\Delta\sigma/\sigma$ [%]
Statistical	0.11
Background	0.06
Alignment & calibration	_
Efficiency	0.77
Closure	0.23
FSR	0.15
Total Systematic (excl. lumi.)	0.82
Luminosity	2.00
Total	2.16
·	

 Systematics dominated by luminosity and efficiency corrections: track reconstruction, PID and trigger

•

Z boson in association with charm

Phys. Rev. Lett. 128 (2022) 082001

- Jet flavor separated with displaced vertex (DV) tagger
- Systematics dominated by c-tagging efficiency

Z bosons	$p_{\rm T}(\mu) > 20 {\rm GeV}, 2.0 < \eta(\mu) < 4.5, 60 < m(\mu^+\mu^-) < 120 {\rm GeV}$
Jets	$20 < p_{\rm T}(j) < 100 {\rm GeV}, 2.2 < \eta(j) < 4.2$
Charm jets	$p_{\rm T}(c \ {\rm hadron}) > 5 \ {\rm GeV}, \ \Delta R(j, c \ {\rm hadron}) < 0.5$
Events	$\Delta R(\mu, j) > 0.5$

Transverse energy-energy correlations

 transverse energy-weighted distribution of the azimuthal difference between jet pairs

$$\frac{1}{\sigma} \frac{\mathrm{d} \sum}{\mathrm{d} \cos \phi} = \frac{1}{N} \sum_{A=1}^{N} \sum_{ij} \frac{E_{\mathrm{T}i}^{A} E_{\mathrm{T}j}^{A}}{\left(\sum_{k} E_{\mathrm{T}k}^{A}\right)^{2}} \delta \left(\cos \phi - \cos \varphi_{ij}\right)$$

ATEEC: Difference between forward and backward part of TEEC

$$\frac{1}{\sigma} \frac{\mathrm{d} \sum^{\mathrm{asym}}}{\mathrm{d} \cos \phi} = \frac{1}{\sigma} \frac{\mathrm{d} \sum}{\mathrm{d} \cos \phi} \bigg|_{\phi} - \frac{1}{\sigma} \frac{\mathrm{d} \sum}{\mathrm{d} \cos \phi} \bigg|_{\pi - \phi}$$

Multi-jet event isotropies

- Event isotropies quantify how far an event E is from a symmetric radiation pattern U
- Energy mover's distance (EMD): minimum amount of work needed to transport one event E into another E' of equal energy

$$EMD_{\beta}(\mathcal{E}, \mathcal{E}') = \min_{\{f_{ij} \ge 0\}} \sum_{i=1}^{M} \sum_{j=1}^{M'} f_{ij} \theta_{ij}^{\beta},$$

$$\sum_{i=1}^{M} f_{ij} = E'_{j}, \qquad \sum_{j=1}^{M'} f_{ij} = E_{i}, \qquad \sum_{i=1}^{M} \sum_{j=1}^{M'} f_{ij} = \sum_{i=1}^{M} E_{i} = \sum_{j=1}^{M'} E_{j} = E_{\text{tot}}$$

- Mode 0: no time-dilation constraints. m₀ controls the amount of CR (mode 0);
- Mode 2: time dilation using the boost factor obtained from the final-state mass of the dipoles, requiring all dipoles involved in a reconnection to be causally connected (strict);
- Mode 3: time dilation as in Mode 2, but requiring only a single connection to be causally connected (loose).