

https://lhcp2023.ac.rs

The limits of QGP-like effects towards smaller systems

from Pb-Pb down to pp and fixed-target collisions

JNIVERSITA DI BOLOGNA

LHCP 2023, Belgrade - 23rd May 2023

Nicolò Jacazio (Bologna University and INFN) On behalf of ALICE, ATLAS, CMS and LHCb

Relativistic AA collisions: the QGP

Initial state: collision of two Lorentz-contracted nuclei

- Fast thermalization $\rightarrow \tau \approx 1$ fm/c
- Phase transition (cross-over) to hadron gas ($T_{\rm c}$ = 156.5 +/- 1.5 MeV P. Steinbrecher et al. Nucl. Phys. A 982 (2019) 847)
 - → Color confinement: **hadronization**
- Chemical freeze-out ($T_{ch} \approx 153 \text{ MeV}$)
 - → inelastic collisions stop: particle abundances fixed
- Kinetic freeze-out ($T_{\text{fo}} \approx 100 \text{ MeV}$)
 - → elastic collisions stop: particle spectra fixed
- Particles fly towards detectors

beam

CMS PLB 785 (2018) 14

Partonic energy loss: jet quenching and energy loss hierarchy $\to R_{\rm AA}^\pi \sim R_{\rm AA}^{
m D} < R_{\rm AA}^{
m B}$

• Non prompt J/ψ produced from B decays

$$R_{\text{AA}} = \frac{1}{\langle N_{\text{Coll}} \rangle} \frac{d^2 N / dy dp_{\text{T}}|_{AA}}{d^2 N / dy dp_{\text{T}}|_{pp}}$$

beam

nicolo.jacazio@cern.ch

5

beam

Compelling evidence of QGP formation putting together SPS, RHIC and LHC results!

A. Timmins Quark-gluon plasma properties from LHC data 22 May 2023, 18:15

Pre LHC: pp, pA and AA

- At the LHC: QGP is formed in AA collisions → clear signatures (e.g. flow, strangeness enhancement, nuclear modification factor, jet suppression, ...)
- p—Pb → control experiment, disentangle cold nuclear matter effects
- pp collisions → reference for Pb—Pb

Collective evolution: two particle correlation

Collective expansion translates into long range modulation of particle emission in azimuth

Collective evolution holding until pp?

- Collective expansion translates into long range modulation of particle emission in azimuth
- Also observed in p-Pb and pp → "small systems" is born
- Collective expansion also at play? Under which conditions does this not happen?

Small systems post LHC

- Tentative definition: "system a priori too small to show characteristics of heavy ion physics and however in which we observe them" → small systems are defined from AA
- Nota bene: with this definition a system "too small" is not defined a priori → sometimes a final state looking like a large system, at least for charged particle multiplicity
- Minimum Bias pp still holds as the reference \rightarrow high-multiplicity events \sim O(10-4) of the total cross section

Collective motion in small systems

• High multiplicity \rightarrow many partonic interactions \rightarrow many color strings \rightarrow color string shoving!

- PYTHIA with string shoving can reproduce long range angular correlation
- Explains presence in high-multiplicity hadron-hadron collisions

nicolo.jacazio@cern.ch

11

Breaking down of the collective evolution?

• No significant long range correlation is found in e+e- collisions around $\Delta \varphi = 0$

And at the LHC?

- No significant long range correlation is found in e+e- collisions around $\Delta \varphi = 0$
- At the LHC we can lower the multiplicity in pp collisions
 - Correlation in pp is larger than that of e+e- at similar multiplicity

Anisotropic flow of identified particle

- $v_2 > 0$ in small systems: low $p_T \rightarrow$ consistent with mass ordering intermediate $p_T \rightarrow$ particle type grouping
- Described by hydro with quark coalescence and jet fragmentation

 $v_2 > 0$ implies some energy loss yet no jet quenching? \rightarrow to be solved!

Going smaller at the LHC: UPCs

- Coulomb fields of moving charges equivalent to a flux of photons boosted to high energies
 - γ energies of \sim 10s GeV with a 2.5 TeV Pb beam
- High multiplicity events → no clear near side ridge

Going smaller at the LHC: UPCs

- Coulomb fields of moving charges equivalent to a flux of photons boosted to high energies
 - γ energies of \sim 10s GeV with a 2.5 TeV Pb beam
- High multiplicity events → no clear near side ridge
- Non-zero v₂ but lower than hadron-hadron collisions!
- Caveat: v2 coefficients vulnerable to (residual) non-flow

"Baryon-to-meson"

 In Pb-Pb collisions mass-dependent hardening of the spectra

 $low-p_T$ depletion intermediate- p_T enhancement

protons are shifted towards higher momenta

 \rightarrow interpreted as radial flow common velocity field ($p=m\gamma\beta$)

17

"Baryon-to-meson"

- In Pb-Pb collisions mass-dependent hardening of the spectra
 - $low-p_T$ depletion intermediate- p_T enhancement
- protons are shifted towards higher momenta
 - \rightarrow interpreted as radial flow common velocity field ($p=m\gamma\beta$)
- Remarkable consistency across systems as a function of multiplicity
- high- p_T : recovery of universal behavior?

"Baryon-to-meson" ratio with HF probes

- Λ_c^+/D^0 enhanced at intermediate p_T in central Pb-Pb collisions (also measured up to high p_T CMS-PAS-HIN-21-004)
- Λ_c^+/D^0 in p—Pb does not depend on the final-state multiplicity \to similar values observed in peripheral Pb-Pb collisions (LHCb-PAPER-2021-046)
 - Comparison to $\Lambda/K_{\scriptscriptstyle S}^0$ might indicate coalescence of heavy quarks saturates earlier than for light quarks in small systems

Strangeness enhancement in small systems

- One of the original traces of the QGP
 → thermal production via gluon fusion
- Enhanced production of strange hadrons wrt π
 → increasing with multiplicity
- Hierarchy with strangeness content: $K_S^0 < \Lambda(1s) < \Xi (2s) < \Omega (3s)$
- Strangeness increases with multiplicity following a universal trend

Strangeness enhancement: more differential

Relative strangeness production:

Increases with multiplicity at midrapidity

Decreases with forward energy

- Same hierarchy with strangeness content observe vs multiplicity and forward energy!
- Can we disentangle the effects?

Zero Degree Calorimeter (ZDC)

Forward calorimeters counting collision remnants

nicolo.jacazio@cern.ch

EZDC BUUU

Strangeness enhancement: more differential

At fixed multiplicity:

Relative Ξ yield increase with forward activity

At fixed multiplicity:

Relative Ξ yield increase with decreasing energy

Increase in the average fraction of strange hadrons with increasing multiplicity and decreasing ZDC energy

Strangeness enhancement with beauty?

- Measurement of B_s^0 and B^0 at forward rapidity (2 < y < 5) in pp at 13 TeV
- Significant increase in B_s^0/B_s^0 with multiplicity when measured in the same rapidity range
- $bar{b}$ pair production at hadron colliders dominated by hard parton-parton interactions o set in the initial stages
- Possibly due to quark coalescence \to enhanced B^0_s/B^0_s ratio with increasing particle multiplicity

Smaller systems with fixed target

- SMOG → unique opportunity to access pA and AA collisions with smaller nuclei at the LHC
- J/ψ showing no discontinuity from p—Ne to central Pb—Ne
- More data and more collision systems required to complete the picture

•	SMOG2 will be taking	data in Run 3 →	more nuclei, x1000	increase in	luminosity
			,		J

Integrated luminosity syst. error on J/ψ x-sec. J/ψ yield D^0 yield Λ_c yield $\psi(2S)$ yield $\psi(1S)$ yield	SMOG largest sample p-Ne@68 GeV $\sim 100 \text{ nb}^{-1}$ 6-7% 15k 100k 1k 150 4	SMOG2 example p-Ar@115 GeV 100 pb ⁻¹ 2-3 % 35M 350M 3.5M 400k 15k
Low-mass ($5 < M_{\mu\mu} < 9 \text{ GeV/}c^2$) Drell-Yan yield	5	20k

Z. Citron et al. CERN-LPCC-2018-07

Conclusions

Small systems exhibit features typical of AA collisions

Soft boundaries between small and large systems

Dynamics

- Correlations in the smallest systems (γp , γPb) show no long range effect but overall positive flow
- Precision measurements of identified hadron flow show mass effect in small systems
- Baryon-over-meson ratio showing universal evolution among systems in the LF sector

Hadrochemistry

- Strangeness enhancement observed in small systems with light and heavy flavors
- More differential measurements of the initial state effects on strangeness

Pushing the limits to understand small systems

Future data will help us in understanding → going smaller, more differential, larger Crucial role of the LS2 upgraded detectors