EW precision predictions and QCD-EW interplay for the LHC

University of Sussex

Jonas M. Lindert

Science & Technology Facilities Council

UK Research and Innovation

LHCP Belgrade 26th May 2023

Global EW fit

Perturbative expansion

scale variation at NNLO

aMC@NLO, Sherpa, Herwig... & Recola, Madloop, Gosam, OpenLoops

dedicated MC's: Matrix, MCFM, NNLOjet, ...

scale variation at NNLO

• Fixed-order NLO EW largely automated • Still computationally very challenging for high-multiplicity $(2 \rightarrow 5, 6, 7)$ processes: VBS, VVV, off-shell top-processes, ... • Consistent matching to parton showers only available for few selected processes (DY, HV, VV)

scale variation at NNLO

5

EW corrections become sizeable at large p_{T,V}: -30% @ I TeV

Origin: virtual EW Sudakov logarithms

How to estimate corresponding pure EW uncertainties of relative $\mathcal{O}(\alpha^2)$?

Large EW corrections dominated by Sudakov logs

[Ciafaloni, Comelli,'98; Lipatov, Fadin, Martin, Melles, '99; Kuehen, Penin, Smirnov, '99; Denner, Pozzorini, '00]

Universality and factorisation: [Denner, Pozzorini; '01]

$$\delta \mathcal{M}_{\text{LL+NLL}}^{1-\text{loop}} = \frac{\alpha}{4\pi} \sum_{k=1}^{n} \left\{ \frac{1}{2} \sum_{l \neq k} \sum_{a=\gamma, Z, W^{\pm}} I^{a}(k) I^{\bar{a}}(l) \ln^{2} \frac{\hat{s}_{kl}}{M^{2}} + \gamma^{\text{ew}}(k) \ln \frac{\hat{s}}{M^{2}} \right\} \mathcal{M}_{0}$$

Large EW corrections dominated by Sudakov logs

Uncertainty estimate of (N)NLO EW from naive exponentiation $\times 2$:

 $\Delta_{\rm EW}^{\rm Sud} \approx \left(k_{\rm NLOEW}\right)^2$

 $\Delta_{\rm EW}^{\rm hard} \approx O(1\%)$

e.g. from scheme variation, e.g. Gmu vs. a(mZ)

Large EW corrections dominated by Sudakov logs

[Kühn, Kulesza, Pozzorini, Schulze; 05-07]

also: alpgen [Chiesa, et. al., '13]

➡Applicable beyond SM ➡Two-loop Sudakov logs

M 1.08 1.06 1.04 1.02

<u>9</u> 0.96

× 1.1 ∐ 1.08

H 012 1.06 1.04 1.02

90.98 0.96 0.94 0.92

 $\Delta R = 0.005$

 $\Delta R = 0.1$

20

40

Ч

60

 $\Delta_{\rm EW}^{\rm QED} = |\delta_{\rm EW} - \delta_{\rm EW+PS/YFS}|$

Mixed QCD-EW uncertainties

 $\mathrm{d}\sigma_{\mathrm{NNLO\,QCD\times EW}} = \mathrm{d}\sigma_{\mathrm{LO}}\left(1 + \delta_{\mathrm{QCD}}\right)\left(1 + \delta_{\mathrm{EW}}\right)$

 $pT_j > 30 \text{ GeV}$

13

- pole approximation vs. full computation: agree below the percent level

Exact mixed QCD-EW for DY

• Comparison against naive factorised NLO QCD x NLO EW ansatz: fail at the 5-10% level • At large p_{T,μ^+} in DY: sizeable contributions from $pp \rightarrow Vj$ which receives larger EW corrections

Mixed QCD-EW uncertainties

- at large pTVI:VV phase-space is dominated by V+jet (w/ soft V radiation)

$$-\frac{d\sigma_{VV}^{V(V)j}}{d\sigma_{VV}^{LO}} \propto \frac{\sigma_{00}}{\alpha_{\rm S}} \log \left(\frac{Q^2}{M_W^2}\right) \simeq 3 \quad \text{at} \quad Q = 17$$

- •NNLO / NLO QCD moderate and NNLO uncert. 5-10%
- •Very large difference $d\sigma_{
 m NNLO\,QCD+EW\,VS}$, $d\sigma_{
 m NNLO\,QCD\times EW}$
 - . In additive combination dominant Vj topology does not receive any EVV corrections 2. In multiplicative combination EW correction for VV is applied to Vj hard process
- Pragmatic solution I: take average as nominal and spread as uncertainty
- Pragmatic solution II: apply jet veto to constrain Vj toplogoies

MEPS @ NLO QCD + EW

WW(+jet): [Bräuer, Denner, Pellen, Schönherr, Schumann; '20] ZZ(+jet): [Bothmann, Napoletano, Schönherr, Schumann, Villani; '21]

• More rigorous solution: merge VVj incl. approx. EW corrections with VV with Sherpa's MEPS@NLO QCD + EWvirt

Used in many ATLAS modern multi-purpose samples: V+jets,VV+jets, tt+jets

[Kallweit, JML, et. al.; '15]

16

VBS @ NLO QCD + EW

• QCD and EW ss-WWjj at NLO QCD+EW: [Biedermann, Denner, Pellen '16+'17] • EW WZjj at NLO QCD+EW: [Denner, Dittmaier, Maierhöfer, Pellen, Schwan, '19] • QCD and EW ZZjj at NLO QCD+EW: [Denner, Franken, Pellen, Schmidt, '20+'21] • EW WWjj at NLO QCD+EW: [Denner, Franken, Schmidt, Schwan, '22]

19

POWHEG-BOX-RES Jezo, Nason, '15]

$$d\sigma = \bar{B}_{bb41-s1}(\Phi_{B}) d\Phi_{B} \left[\prod_{\alpha = \alpha_{b}, \alpha_{\bar{b}}, \alpha_{ISR}} \left[\Delta_{\alpha}^{bb41}(q_{cut}) + \Delta_{\alpha}^{bb41}(k_{T}^{\alpha}) \frac{R_{\alpha}^{bb41}(\Phi_{\alpha}(\Phi_{B}, \Phi_{rad}^{\alpha}))}{B^{bb41}(\Phi_{B})} d\Phi_{rad}^{\alpha} \right] \right] \\ \times \left[\Delta_{\alpha_{W}}^{pp \to \ell \nu_{l} q \bar{q} b \bar{b}}(q_{cut}) + \Delta_{\alpha_{W}}^{pp \to \ell \nu_{l} q \bar{q} b \bar{b}}(k_{T}^{\alpha_{W}}) \frac{R_{\alpha_{W}}^{pp \to \ell \nu_{l} q \bar{q} b \bar{b}}(\Phi_{\alpha_{W}}(\Phi_{B}, \Phi_{rad}^{\alpha_{W}}))}{B^{pp \to \ell \nu_{l} q \bar{q} b \bar{b}}(\Phi_{B})} d\Phi_{rad}^{\alpha_{W}} \right]$$

emission from W^- or W^-

bb4l-sl vs. on-shell $t\bar{t} + tW$ with decays

[Talk by M. Grazzini]

• O(1%) difference: tt-Wt interference + genuine off-shell

Conclusions

- Precision is key for EW measurements, as well as for searches.
- EW corrections become large at the TeV scale
- Convincing progress in many directions: ✓EW Sudakov logs
 - ✓QCD-EW
 - $\sqrt{(N)NLOPS QCD+EW}$
 - ✓ Multi particle processes: $2 \rightarrow 5/6/7$
 - ✓ Off-shell semi-leptonic $t\bar{t}$ @ NLOPS-RES
- Let's push the SM precision frontier!

Backup

Theoretical Predictions for the LHC

24

EW standard candles at hadron colliders

The need for off-shell computations:VV

[Biedermann, M. Billoni, A. Denner, S. Dittmaier, L. Hofer, B. Jäger, L. Salfelder ;' I 6]

➡ sizeable differences in fully off-shell vs. double-pole approximation in tails

 $pp \to \ell \bar{\ell} \ell' \bar{\ell}'$ u_{μ} $p_{\mathrm{T},\bar{\nu}_{e}}$ beam axis $ec{p}_{\mathrm{T},
u_{\mu}}$ $\nu_{\mu} \downarrow$

Combination of QCD and EW corrections

- full calculations of $\mathcal{O}(\alpha \alpha_s)$ out of reach
- Approximate combination: MEPS@NLO including (approximate) EW corrections
- key: QCD radiation receives EW corrections!
- strategy: modify MC@NLO B-function to include NLO EW virtual corrections and integrated approx. real corrections = VI

$$\overline{B}_{n,QCD+EW_{virt}}(\Phi_n) = \overline{B}_{n,QCD}(\Phi_n) + V_{n,EW}(\Phi_n) + I_{n,EW}(\Phi_n)$$

exact virtual contribution
approximate integrated real contribution

Mixed QCD-EW uncertainties

N-jettiness cut ensures approx. constant ratio V+2jets/V+jet

$$\tau_1 = \sum_k \min_i \left\{ \frac{2p_i \cdot q_k}{Q_i \sqrt{\hat{s}}} \right\}$$

Estimate of non-factorising contributions

Drell-Yan: M_W measurements

- Method: template fits of sensitive CC DY distributions $(p_{T,l}, M_T, E_{miss})$

• Motivation: M_W is a derived quantity \rightarrow precise measurement is a stringent test of SM!

- Need to control shape effects at the sub-1% level!
- Dominant effects: QCD ISR and QED FSR

\rightarrow Theory precision essential for improvements in mW determination!

Mixed QCD-EW corrections to DY production: NC

•For precision in resonant region: expand around M²

[Dittmaier, Huss, Schwinn, '14]

[Dittmaier, Huss, Schwinn, '15]

prod x decay

dominant

genuine QCD-EW in prod

[Buccioni, Caola, Delto, Jaquier, Melnikov, Röntsch, '20] [Behring, Buccioni, Caola, et. al. '20]

last missing piece

CC+NC: $\delta \langle p^{l,Z}_{\perp} \rangle^{\mathrm{th}}$ $\delta m_W^{\rm meas}$ $\delta C_{
m th}$ $\langle p^{l,W} \rangle^{\mathrm{th}}$ $\langle p^{l,Z} \overline{
angle_{\perp}} \rangle^{\mathrm{th}}$ $m_W^{\rm meas}$ $C_{\rm th}$ $\delta m_W^{\mathrm{meas}}$ -17 ± 2 MeV =

[Behring, Buccioni, Caola, et. al. '21]

VBF-V as background of the invisible Higgs

and EW corrections at the percent level at large mjj

Z+jets/W+jets ratios for H→invisible [JML, Pozzorini, Schönherr, '22]

The resonance-aware bb4l generator [Jezo, JML, Nason, Oleari, Pozzorini, '16]

- Full process $pp \rightarrow b\bar{b}e^+\nu_e\mu^-\bar{\nu}_\mu$ with massive b's (**4FS scheme**)
- Implemented in the POWHEG-BOX-RES framework

Physics features:

- exact non-resonant / off-shell / interference / **spin-correlation** effects at NLO
- unified treatment of **top-pair and Wt** production with interference at NLO
- access to phase-space regions with **unresolved b**quarks and/or jet vetoes
- consistent NLO+PS treatment of top resonances, including quantum corrections to top propagators and off-shell top-decay chains

Standard POWHEG matching:

- Standard FKS/CS subtraction does not preserve virtuality of intermediate resonances \rightarrow R and B $(\sim S)$ with different virtualities.
- R/B enters POWHEG matching via generation of radiation and via Sudakov form-factor

 \rightarrow uncontrollable distortions

Resonance-aware POWHEG matching: [lezo, Nason, '15]

- Separate process in resonances histories
- Modified FKS mappings that retain virtualities

Multiple-radiation scheme

▶ In traditional approach only hardest radiation is generated by POWHEG:

BUT: for top-pair (or single-top) production and decay, emission from production is almost always the hardest.

- \rightarrow emission off decays are mostly generated by the shower.
- ▶ Multiple-radiation / allrad scheme: introduced in [Campbell, Ellis, Nason, Re; '15]
 - keep hardest emission from all resonance histories.
 - merge emissions into a single radiation event with several radiated partons

Off-shell effects in bb4l

"'Probing the quantum interference between singly and doubly resonant top-quark production in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector"

Phys. Rev. Lett. 121 (2018) 152002

 $m_{b\ell}^{\text{minimax}} \equiv \min\{\max(m_{b_1\ell_1}, m_{b_2\ell_2}), \max(m_{b_1\ell_2}, m_{b_2\ell_1})\}$ For tT (double-resonant) at LO: $m_{b\ell}^{\rm minimax} < \sqrt{m_t^2 - m_W^2}$

→ sensitivity to off-shell effects/ tt-Wt interference beyond endpoint

Semi-leptonic tt

[Denner, Pellen, '18]

• Control of reconstructed top-mass crucial for top-mass measurements

New features in bb4I-sl / bb4I-dl [Jezo, JML, Pozzorini, to appear]

$$P_{1} = \frac{m_{t}^{4}}{(s - p_{t}^{2})^{2} + m_{t}^{2}\Gamma_{t}^{2}} \times \frac{m_{t}^{4}}{(s - p_{t}^{2})^{2} + m_{t}^{2}\Gamma_{t}^{2}} \times \cdots$$

$$P_{2} = \frac{m_{Z}^{4}}{(s - p_{Z}^{2})^{2} + m_{t}^{2}\Gamma_{Z}^{2}} \times \cdots$$

Kinematic projectors

$$P_{1} = B_{t\bar{t}}$$

$$P_{2} = B_{tW^{+}}$$

$$P_{3} = B_{\bar{t}W^{-}}$$

41

•Excellent agreement between original and ME-based projectors

New features in bb4I-sl / bb4I-dl [Jezo, JML, Pozzorini, to appear]

ME projectors might allow to define single-top fractions in off-shell computation!

 $\rho_{\rm rem}^{\rm (hist)}(\Phi_{\rm B})|_{\rm ME''} = |\mathcal{A}_{\rm full}|^2 - |\mathcal{A}_{t\bar{t}}|^2 - |\mathcal{A}_{\bar{t}W^+}|^2 - |\mathcal{A}_{tW^-}|^2$

rem

$$P_{1} = B_{t\bar{t}}$$

$$P_{1} = B_{t\bar{t}}$$

$$ME \text{ projectors}$$

$$\frac{B_{2}}{2+P_{3}} d\sigma$$

$$P_{3} = B_{\bar{t}W^{-}}$$

$\sigma_{t\bar{t}} = \lim_{\xi_t \to 0} \left(\xi_t^2 \sigma_{bb4l} \right)$						
	naive		matrix-element based			extrapolation
	$\chi = 1$	$\chi = 0.1$	ME	ME'	ME''	$\Gamma_t \to 0$
	90.6%	95.3%	94.2%	93.7%	95.3%	96.0%
	9.4%	4.7%	5.8%	6.3%	6.2%	10%
					-1.5%	4.070

