EW precision predictions and QCD-EW interplay for the LHC

Jonas M. Lindert

us
University of Sussex

LHCP
Belgrade
26th May 2023

Perturbative expansion

$$
+\alpha_{S}^{2} \mathrm{~d} \sigma_{\mathrm{NNLO}}
$$

$$
\text { NNLO QCD } \quad O(1 \%)
$$

$$
+\alpha_{S}^{3} \mathrm{~d} \sigma_{\mathrm{N} 3 \mathrm{LO}}+\ldots
$$

N3LO QCD O(0.1\%)
$<$ only known for inclusive-H, DY
scale variation at NNLO
dedicated MC's: Matrix, MCFM, NNLOjet,

Perturbative expansion

aMC@NLO, Sherpa, Herwig... \&
Recola, Madloop, Gosam, OpenLoops
dedicated MC's: Matrix, MCFM, NNLOjet,

- Fixed-order NLO EW largely automated
- Still computationally very challenging for high-multiplicity ($2 \rightarrow 5,6,7$) processes:VBS,VVV, off-shell top-processes, \ldots - Consistent matching to parton showers only available for few selected processes (DY, HV,VV)
scale variation at NNLO

Perturbative expansion

dedicated MC's: Matrix, MCFM, NNLOjet,
$+\alpha_{S}^{2} \mathrm{~d} \sigma_{\mathrm{NNLO}}+\alpha_{\mathrm{EW}}^{2} \mathrm{~d} \sigma_{\text {NNLO EW }}+\alpha_{S} \alpha_{\mathrm{EW}} \mathrm{d} \sigma_{\text {NNLO QCDxEW }}$ NNLO QCD NNLOEW NNLO QCD-EW

scale variation at NNLO

EW uncertainties: Sudakov

EW corrections become sizeable at large pт,v: -30\% @ I TeV

Origin: virtual EW Sudakov logarithms

How to estimate corresponding pure EW uncertainties of relative $\mathcal{O}\left(\alpha^{2}\right)$?

EW uncertainties: Sudakov

Large EW corrections dominated by Sudakov logs

[Ciafaloni, Comelli,'98; Lipatov, Fadin, Martin, Melles, '99; Kuehen, Penin, Smirnov, '99; Denner, Pozzorini, '00]

Universality and factorisation: [Denner, Pozzorini; '0 I]

$$
\begin{aligned}
\delta \mathcal{M}_{\mathrm{LL}+\mathrm{NLL}}^{1-\mathrm{loop}}=\frac{\alpha}{4 \pi} \sum_{k=1}^{n}\{ & \frac{1}{2} \sum_{l \neq k} \sum_{a=\gamma, Z, W^{ \pm}} I^{a}(k) I^{\bar{a}}(l) \ln ^{2} \frac{\hat{s}_{k l}}{M^{2}} \\
& \left.+\gamma^{\mathrm{ew}}(k) \ln \frac{\hat{s}}{M^{2}}\right\} \mathcal{M}_{0}
\end{aligned}
$$

EW uncertainties: Sudakov

Large EW corrections dominated by Sudakov logs \downarrow

Uncertainty estimate of (N)NLO EW from naive exponentiation $\times 2$:

$$
\Delta_{\mathrm{EW}}^{\mathrm{Sud}} \approx\left(k_{\mathrm{NLOEW}}\right)^{2}
$$

EW uncertainties: Sudakov

Large EW corrections dominated by Sudakov logs
\downarrow
Uncertainty estimate of (N)NLO EW from naive exponentiation $\times 2$:

check against two-loop Sudakov logs
[Kühn, Kulesza, Pozzorini, Schulze; 05-07]

Sherpa

[Bothmann, Napoletano, '20]

MadGraph5_aMC@NLO
[Pagani, Zaro, '2 I]

OpenLoops

[JML, Mai, to appear]

- all based on
[Denner, Pozzorini, '00, '0 I]
$\delta_{k l}^{\mathrm{DL}} \mathcal{M}^{\varphi_{i_{1}} \ldots \varphi_{i_{n}}} \stackrel{\mathrm{LA}}{=} \frac{\alpha}{4 \pi} \sum_{\varphi_{i_{k}^{\prime}}, \varphi_{i_{l}^{\prime}}} I_{\varphi_{i_{k}^{\prime}} \varphi_{i_{k}}}^{V} I_{\varphi_{i_{l}^{\prime}} \varphi_{i_{l}}}^{\bar{V}} \mathcal{M}_{0}^{\varphi_{i_{1}} \ldots \varphi_{i_{k}^{\prime}} \ldots \varphi_{i_{l}^{\prime}} \ldots \varphi_{i n}} C_{0}^{\mathrm{eik}}$

$$
C_{0}^{\mathrm{eik}} \equiv \frac{1}{\left(p_{k}+p_{l}\right)^{2}}\left[\log ^{2} \frac{\left|r_{k l}\right|}{M_{V}^{2}}-2 i \pi \Theta\left(r_{k l}\right) \log \frac{\left|r_{k l}\right|}{M_{V}^{2}}\right]
$$

- Applicable beyond SM
\Rightarrow Two-loop Sudakov logs
[Talk by S. Zanoli]
EW uncertainties: QED radiation
NLOPS EW needs to be
resonance-aware: [Jezo, Nason, 'l5]

Conservative estimate of higher-order QED radiation:

NLO EW

VS.
multi-photon radiation (YFS)
or
QED-PS

MiNNLOPS QCD + NLOPS EW

[JML, Lombardi, Wiesemann, Zanderighi, Zanoli, '22]
for NLOPS QCD + EW also [Chiesa, Re, Oleari '20]

[JML, Lombardi, Wiesemann, Zanderighi, Zanoli, '22]

- Percent level precision in MiNNLOPS QCD + NLOPS EW predictions

Mixed QCD-EW uncertainties

Bold estimate:

Consider real $\mathcal{O}\left(\alpha \alpha_{s}\right)$ correction to X production $\simeq \mathrm{NLO} \mathrm{EW}$ to $\mathrm{X}+1$ jets
and we often observe

$$
\left.\frac{\mathrm{d} \sigma_{\mathrm{NLOEW}}}{\mathrm{~d} \sigma_{\mathrm{LO}}}\right|_{X+\text { jet }}-\left.\frac{\mathrm{d} \sigma_{\mathrm{NLOEW}}}{\mathrm{~d} \sigma_{\mathrm{LO}}}\right|_{X} \quad \lesssim 1 \%
$$

In these cases strong support for

- factorisation
- multiplicative QCD \times EW combination
- Consider only such non-factorising effects as uncertainty!?

Exact mixed QCD-EW for DY

[Buccioni, Caola, Delto, Jaquier, Melnikov, Röntsch, '20] [Behring, Buccioni, Caola, et. al. '20]
[Bonciani, Buonocore, Grazzini, Kallweit et. al. $2 \times$ '2 1]

- pole approximation vs. full computation: agree below the percent level
- Comparison against naive factorised NLO QCD \times NLO EW ansatz: fail at the 5-I0\% level
- At large $p_{\mathrm{T}, \mu^{+}}$in DY: sizeable contributions from $p p \rightarrow V j$ which receives larger EW corrections

Mixed QCD-EW uncertainties

[M. Grazzini, S. Kallweit, JML, S. Pozzorini, M. Wiesemann; '19]

- NLO QCD/LO=2-5! ("giant K-factor')
- at large pTVI:VV phase-space is dominated by $\mathrm{V}+\mathrm{jet}(\mathrm{w} /$ soft V radiation)

-NNLO / NLO QCD moderate and NNLO uncert. 5-I 0\%
NLO EW/LO=-(40-50)\%
- Very large difference $\mathrm{d} \sigma_{\text {NNLO }}$ QCD + EW VS . $\mathrm{d} \sigma_{\text {NNLO }} \mathrm{QCD} \times \mathrm{EW}$
- Problems:
I. In additive combination dominant Vj topology does not receive any EW corrections

2. In multiplicative combination EW correction for WV is applied to Vj hard process
-Pragmatic solution l: take average as nominal and spread as uncertainty
-Pragmatic solution II: apply jet veto to constrain Vj toplogoies

MEPS @ NLO QCD + EW

WW (+jet): [Bräuer, Denner, Pellen, Schönherr, Schumann; '20]
ZZ(+jet): [Bothmann, Napoletano, Schönherr, Schumann, Villani; '2I]

Used in many ATLAS modern multi-purpose samples:
V+jets, V + +jets , tt+jets
-More rigorous solution: merge VWj_{j} incl. approx. EW corrections with V with Sherpa's MEPS@NLO QCD + EWvirt

FO

MEPS@NLO QCD + EWvirt

$$
\mathrm{pp} \rightarrow \mu^{+} v_{\mu} \mathrm{e}^{-} \bar{v}_{\mathrm{e}}+\text { jets @ } 13 \mathrm{TeV}
$$

Perturbative expansion: tower of contributions

- For processes with at least 4-quarks there is a tower of $\mathrm{LO}(\mathrm{NLO})$ contributions.
- E.g.: multijets, $t \bar{t}+X, V+j e t s(V B F-V), \mathrm{V}+$ jets ($\mathrm{VBS}-\mathrm{V} \mathrm{V}$),

$$
\begin{aligned}
& l_{s_{e}} \text { a/so. } \\
& \operatorname{Talk~by~G.~}_{\text {ellic }}^{\text {cioli] }}
\end{aligned}
$$

$$
\mathrm{d} \sigma=\mathrm{d} \sigma\left(\alpha_{S}^{2} \alpha^{2}\right)+\mathrm{d} \sigma\left(\alpha_{S} \alpha^{3}\right)+\mathrm{d} \sigma\left(\alpha^{4}\right)+\ldots
$$

$\cdots+\mathrm{d} \sigma\left(\alpha_{S}^{3} \alpha^{2}\right)+\mathrm{d} \sigma\left(\alpha_{S}^{2} \alpha^{3}\right)+\mathrm{d} \sigma\left(\alpha \alpha^{4}\right)+\sigma\left(\alpha^{5}\right)$

VBF-V @ NLO QCD + EW

First complete NLO QCD vs.VBF-approximation
[Oleari, Zeppenfeld, '04]

$$
=\stackrel{\left.\mathrm{pp} \rightarrow v_{\ell \bar{\varepsilon}_{\ell}}+2 \text { jets a a } 13 \text { TeV } \quad \text { UML, Pozzorini, Schönherr, } 2 L\right]}{\mid 1}
$$

- If LO interference is small: possible to consider QCD and EW production modes as independent and factorise QCD and EW corrections to the respective processes
- Otherwise, still factorise but consider QCD+EW combination as nominal (and QCDxEW as uncertainty)

VBS @ NLO QCD + EW

- QCD and EW ss-WWjj at NLO QCD+EW: [Biedermann, Denner, Pellen '|6+'|7]
- EW WZjj at NLO QCD+EW: [Denner, Dittmaier, Maierhöfer, Pellen, Schwan, '19]
- QCD and EW ZZjj at NLO QCD+EW: [Denner, Franken, Pellen, Schmidt, '20+'21]
- EW WWjj at NLO QCD+EW: [Denner, Franken, Schmidt, Schwan, '22]

$-2 \rightarrow 6$ particles at NLO EW!

Order	$\mathcal{O}\left(\alpha^{6}\right)+\mathcal{O}\left(\alpha^{7}\right)$	$\mathcal{O}\left(\alpha^{6}\right)+\mathcal{O}\left(\alpha_{s} \alpha^{6}\right)$	$\mathcal{O}\left(\alpha^{6}\right)+\mathcal{O}\left(\alpha^{7}\right)+\mathcal{O}\left(\alpha_{s} \alpha^{6}\right)$
$M_{\mathrm{j}_{\mathrm{i}, 2}}>500 \mathrm{GeV}$			
$\sigma_{\mathrm{NLO}}[\mathrm{fb}]$	${ }^{0.06069(4)}$	$0.07375(25)$	$0.06077(25)$
$\delta[\%]$	-17.6	0.1	-17.5

- In the VBS phase-space EW mode receives:
- very small QCD corrections (percent level)
\rightarrow (20\%) EW corrections
- Always measure also combined QCD-mode + EW-mode fiducial xsections!
[Talk by M. Grazzini]

[Jezo, JML, Pozzorini, to appear]

- In this approximation we drop some off-shell/interference effects
-But: tt, wt and tt-wt interference is retained!
-POWHEG emission based on allrad approach:

$$
\mathrm{d} \sigma=\bar{B}_{\mathrm{bb} 41-\mathrm{sl}}\left(\Phi_{\mathrm{B}}\right) \mathrm{d} \Phi_{\mathrm{B}} \prod_{\alpha=\alpha_{b}, \alpha_{\bar{b}}, \alpha_{\mathrm{ISR}}}\left[\Delta_{\alpha}^{\mathrm{bb} 41}\left(q_{\mathrm{cut}}\right)+\Delta_{\alpha}^{\mathrm{bb} 41}\left(k_{T}^{\alpha}\right) \frac{R_{\alpha}^{\mathrm{bb4l}}\left(\Phi_{\alpha}\left(\Phi_{\mathrm{B}}, \Phi_{\mathrm{rad}}^{\alpha}\right)\right)}{B^{\mathrm{bb} 41}\left(\Phi_{\mathrm{B}}\right)} \mathrm{d} \Phi_{\mathrm{rad}}^{\alpha}\right]
$$

$$
\times\left[\Delta_{\alpha_{W}}^{p p \rightarrow \ell v_{l} q \bar{q} b \bar{b}}\left(q_{\mathrm{cut}}\right)+\Delta_{\alpha_{W}}^{p p \rightarrow \ell v_{l} q \bar{q} b \bar{b}}\left(k_{T}^{\alpha_{W}}\right) \frac{R_{\alpha_{W}}^{p p \rightarrow \ell v_{l} q \bar{q} b \bar{b}}\left(\Phi_{\alpha_{W}}\left(\Phi_{\mathrm{B}}, \Phi_{\mathrm{rad}}^{\alpha_{W}}\right)\right)}{B^{p p \rightarrow \ell v_{l} q \bar{q} b \bar{b}}\left(\Phi_{\mathrm{B}}\right)} \mathrm{d} \Phi_{\mathrm{rad}}^{\alpha_{W}}\right]
$$

- Note: can also be used for full hadronic decays!
bb4l-sl vs. on-shell $t \bar{t}+t W$ with decays
[Jezo, JML, Pozzorini, to appear]

- Percent-level agreement between bb4l and hvq+ST!
- O(I\%) difference: tt-Wt interference + genuine off-shell

- Large differences between $t W$-DR and $t W$-DS e.g. in the tail of pTI - bb4l agrees at $\mathrm{O}(1 \%)$ with $t W$-DS
-Thanks to new ME-based resonance-histories: $t \bar{t}$ fraction in bb4l

Conclusions

- Precision is key for EW measurements, as well as for searches.
- EW corrections become large at the TeV scale
- Convincing progress in many directions:

\checkmark EW Sudakov logs
\checkmark QCD-EW
$\checkmark(N) N L O P S$ QCD+EW
\checkmark Multi particle processes: $2 \rightarrow$ 5/6/7
\checkmark Off-shell semi-leptonic $t \bar{t} @$ NLOPS-RES
- Let's push the SM precision frontier!

Backup

Theoretical Predictions for the LHC

$$
d \sigma=\sum_{i j} \int d x_{1} d x_{2} f_{1}^{\left(P_{1}\right)}\left(x_{1}\right) f_{2}^{\left(P_{2}\right)}\left(x_{2}\right) d \hat{\sigma}_{i j}\left(x_{1} x_{2} s\right)
$$

EW standard candles at hadron colliders

Perturbative expansion

The need for off-shell computations:VV
[Biedermann, M. Billoni, A. Denner, S. Dittmaier, L. Hofer, B. Jäger, L. Salfelder ;'I 6]

$p p \rightarrow V(\rightarrow \ell \bar{\ell}) V^{\prime}\left(\rightarrow \ell^{\prime} \bar{\ell}^{\prime}\right)$
VS.

$$
p p \rightarrow \ell \bar{\ell} \ell^{\prime} \bar{\ell}^{\prime}
$$

$\boldsymbol{\epsilon}$ sizeable differences in fully off-shell vs. double-pole approximation in tails

Relevance of EW higher-order corrections: photon-induced channels

III. QED factorisation and thus photon luminosities needed to absorb IS photon singularities.
\rightarrow Possible large enhancement due to photon-induced channels in the tails of kinematic distributions,
in particular in WW :

\rightarrow large differences between different photon descriptions. Now settled: LUXqed superior
$\rightarrow \mathrm{O}(10 \%)$ contributions from photon-induced channels

Combination of QCD and EW corrections

- full calculations of $\mathcal{O}\left(\alpha \alpha_{s}\right)$ out of reach
- Approximate combination: MEPS@NLO including (approximate) EW corrections
- key: QCD radiation receives EW corrections!
- strategy: modify MC@NLO B-function to include NLO EW virtual corrections and integrated approx. real corrections $=\mathrm{VI}$

$$
\overline{\mathrm{B}}_{n, \mathrm{QCD}+\mathrm{EW}_{\text {virt }}\left(\Phi_{n}\right)=\overline{\mathrm{B}}_{n, \mathrm{QCD}}\left(\Phi_{n}\right)+\mathrm{V}_{n, \mathrm{EW}}\left(\Phi_{n}\right)+\mathrm{I}_{n, \mathrm{EW}}\left(\Phi_{n}\right)}^{\text {exact virtual contribution }} \begin{aligned}
& \text { approximate integrated real contribution }
\end{aligned}
$$

Mixed QCD-EW uncertainties

Estimate of non-factorising contributions

N-jettiness cut ensures approx. constant ratio $V+2 j e t s / V+j e t$

$$
\tau_{1}=\sum_{k} \min _{i}\left\{\frac{2 p_{i} \cdot q_{k}}{Q_{i} \sqrt{\hat{s}}}\right\}
$$

$$
V+2 j e t s / V+j e t
$$

Drell-Yan: Mw measurements

- Motivation: Mw is a derived quantity \rightarrow precise measurement is a stringent test of SM!
- Method: template fits of sensitive CC DY distributions $\left(p_{T, l}, M_{T}, E_{\text {miss }}\right)$

\rightarrow Theory precision essential for improvements in mW determination!

Mixed QCD-EW corrections to DY production: NC

-For precision in resonant region: expand around M^{2}

non-factorizable
[Dittmaier, Huss, Schwinn, ' 14$]$

prod x decay
[Dittmaier, Huss, Schwinn, 'I 5]

genuine QCD-EW in prod
[Buccioni, Caola, Delto, Jaquier, Melnikov, Röntsch, '20] [Behring, Buccioni, Caola, et. al. '20] last missing piece
$\mathrm{CC}+\mathrm{NC}$:

$$
\frac{\delta m_{W}^{\text {meas }}}{m_{W}^{\text {meas }}}=\frac{\delta C_{\mathrm{th}}}{C_{\mathrm{th}}}=\frac{\delta\left\langle p_{\perp}^{l, Z}\right\rangle^{\mathrm{th}}}{\left\langle p_{\perp}^{l, Z}\right\rangle^{\text {th }}}-\frac{\delta\left\langle p_{\perp}^{l, W}\right\rangle^{\text {th }}}{\left\langle p_{\perp}^{l, W}\right\rangle^{\text {th }}}
$$

$$
\delta m_{W}^{\text {meas }}=-17 \pm 2 \mathrm{MeV}
$$

- net effect: few per-mille
dominant
[Behring, Buccioni, Caola, et. al. '2 I]

VBF-V as background of the invisible Higgs

$\mathrm{Z}+$ jets/W+jets ratios for $\mathrm{H} \rightarrow$ invisible
[JML, Pozzorini, Schönherr, '22]

[ATLAS EXOT-2020-1 I]

-For SM Higgs:
BRinv < 0.145 @ 95\% CL

- Both QCD and EW ratios universal with respect to QCD and EW corrections at the percent level at large mjj

Interplay between top-pair and Wt single-top production

5FS

- NLO corrections to Wt swamped by LO t̄+decay
- requires ad-hoc subtraction prescription: DRI, DRII, DSI, DSII
- NLO+PS forWt available in MC@NLO [Frixione, et. al.; '08], POWHEG [Re; ' I I] and Madgraph_aMC@NLO [Demartin et. al.; ' 1 6]

4FS

tt

$\mathrm{p}_{\mathrm{T}}\left(\mathrm{j}_{\mathrm{b}, 1}\right) \quad[\mathrm{Ge} \mathrm{V}]$

- unified treatment of top-pair and Wt including interference
- Wt enhanced in phase-space regions where one b becomes unresolved/vetoed
- requires off-shell $W W$ bb calculation (with massive b's)

The resonance-aware bb4l generator [Jezo, JML, Nason, Oleari, Pozzorini, ' 1 6]

- Full process $p p \rightarrow b \bar{b} e^{+} \nu_{e} \mu^{-} \bar{\nu}_{\mu}$ with massive b's (4FS scheme)
- Implemented in the POWHEG-BOX-RES framework

Physics features:

- exact non-resonant / off-shell / interference / spin-correlation effects at NLO
- unified treatment of top-pair and Wt production with interference at NLO
- access to phase-space regions with unresolved bquarks and/or jet vetoes
- consistent NLO+PS treatment of top resonances, including quantum corrections to top propagators and off-shell top-decay chains

Standard POWHEG matching:

- Standard FKS/CS subtraction does not preserve virtuality of intermediate resonances $\rightarrow R$ and B $(\sim S)$ with different virtualities.
- R/B enters POWHEG matching via generation of radiation and via Sudakov form-factor
\rightarrow uncontrollable distortions
Resonance-aware POWHEG matching:[Jezo, Nason, 'I 5]
- Separate process in resonances histories
- Modified FKS mappings that retain virtualities

Multiple-radiation scheme

- In traditional approach only hardest radiation is generated by POWHEG:

BUT: for top-pair (or single-top) production and decay, emission from production is almost always the hardest.
\boldsymbol{m} emission off decays are mostly generated by the shower.

- Multiple-radiation / allrad scheme: introduced in [Campbell, Ellis, Nason, Re; 'I 5]
- keep hardest emission from all resonance histories.
- merge emissions into a single radiation event with several radiated partons

Off-shell effects in bb4l

"Probing the quantum interference between singly and doubly resonant top-quark production in pp collisions at $\sqrt{s}=13 \mathrm{TeV}$ with the ATLAS detector"

Phys. Rev. Lett. I2I (2018) I52002

$$
m_{b \ell}^{\operatorname{minimax}} \equiv \min \left\{\max \left(m_{b_{1} \ell_{1}}, m_{b_{2} \ell_{2}}\right), \max \left(m_{b_{1} \ell_{2}}, m_{b_{2} \ell_{1}}\right)\right\}
$$

$$
\text { For tt (double-resonant) at LO: } m_{b \ell}^{\operatorname{minimax}}<\sqrt{m_{t}^{2}-m_{W}^{2}}
$$

\rightarrow sensitivity to off-shell effects/ tt-Wt interference beyond endpoint
\rightarrow measure top width

Semi-leptonic tit

$$
p p \rightarrow \ell^{ \pm} \nu_{\ell} j j b \bar{b}
$$

| $\alpha_{S}^{4} \alpha^{2}$ | $\alpha_{S}^{3} \alpha^{3}$ | $\alpha_{S}^{2} \alpha^{4}$ |
| :---: | :---: | :---: |$\alpha_{S} \alpha^{5} \quad \alpha^{6}$

Very high complexity in the full computation :

[Denner, Pellen, 'I 8]

bb4l-sl vs. on-shell top-pair plus single-top

[Jezo, JML, Pozzorini, to appear]

- Control of reconstructed top-mass crucial for top-mass measurements

New features in bb4l-sl / bb4l-dl
[Jezo, JML, Pozzorini, to appear]

New features in bb4l-sl / bb4l-dl

[Jezo, JML, Pozzorini, to appear]

- Excellent agreement between original and ME-based projectors

New features in bb4l-sl / bb4l-dl

[lezo, JML, Pozzorini, to appear]

$$
d \sigma=\frac{P_{1}}{P_{1}+P_{2}+P_{3}} d \sigma+\frac{P_{2}}{P_{1}+P_{2}+P_{3}} d \sigma+\frac{P_{3}}{P_{1}+P_{2}+P_{3}} d \sigma \quad P_{3}=B_{\bar{t} W^{-}}
$$

ME projectors

ME projectors might allow to define single-top fractions in off-shell computation!

