

W/Z precision and differential measurements

Fabrice Balli, CEA Saclay

Large Hadron Collider Physics Conference

Belgrade, 22-26 May 2023

Recent results (uncovered in this talk)

2

- See <u>Bogdan Malaescu's talk</u>
 - W+charm at ATLAS
 - W+charm at CMS
 - ATLAS: tt̄ / Z Cross-Section Ratio at 13.6 TeV (Run 3)
- See <u>Stefanos Leontsinis' talk</u>
 - Z+b-jets at √s=13 TeV with CMS
 - Z+b-jets at √s=13 TeV with ATLAS
 - Z+c-jets at √s=13 TeV with LHCb
- See <u>Armando Bermúdez Martínez talk</u>
 - Azimuthal correlations in Z+jets with CMS
- See Jianqiao Deng's talk
 - LHCb: Search for the rare decays W+→D+sγ and Z→D0γ
 - Z cross section at 5 TeV
- See V. Cherepanov's talk
 - CMS: $W \rightarrow \tau \nu$ decay branching fraction

arXiv:2302.00336

CMS-PAS-21-005

ATLAS-CONF-2023-006

Phys.Rev.D 105 (2022) 9, 092014

arXiv:2204.12355

Phys.Rev.Lett. 128 (2022) 082001

arXiv:2210.16139

LHCB-PAPER-2022-033

NEW

Phys. Rev. D 105, 072008

Recent results (covered)

· CMS: Precision measurement of the Z boson invisible width at 13 TeV

CMS-SMP-18-014-003

· CMS : т lepton polarization in Z boson decays

CMS-PAS-SMP-18-010

 CMS: Measurement of the mass dependence of the transverse momentum of lepton pairs in Drell-Yan production at 13 TeV Cherepanov's talk
CMS-SMP-20-003

• ATLAS: Full phase space Z double differential crosssection (p_T , y) at 8 TeV and measurement of α_S ATLAS-CONF-2023-013

See also X. Li's talk

• ATLAS: W mass reanalysis at 7 TeV

ATLAS-CONF-2023-015 ATLAS-CONF-2023-004

· ATLAS: W/Z p_T with low-pileup data at 5.02 TeV and 13 TeV

ATLAS-CONF-2023-028

NEW

 LHCb : Precision measurement of forward Z boson production at 13 TeV

LHCb-PAPER-2021-037

See also J. Deng's talk

 LHCb : First measurement of Z→ μμ angular coefficients in the forward region at 13 TeV

LHCb-PAPER-2021-048

LHCb: Z cross section at 5 TeV

NEW

Introduction

- W/Z bosons known for decades, yet they have still a lot to tell: W mass, weak mixing angle, etc...
- Precision measurements help check the consistency of the Standard Model (SM) through the electroweak fit :
 - Example: measurements of W mass (m_W) , α_{S} , weak mixing angle
 - Also give information on vacuum stability close to the Planck scale (m_{top} , α_S)
- Differential measurements give information on perturbative and non-perturbative QCD, in turn reducing modeling uncertainties in measurements of e.g. electroweak parameters
 - Examples :

See also Tobias Neumann's talk

- measuring W/Z p_T and boson angular coefficients decrease uncertainties in mW measurement
- PDF constraints from W and Z differential cross-sections

Precision measurement of the Z boson invisible width at 13 TeV

- Constraint on the number of light neutrino species
- Key ingredient: hadronic system recoiling against vector boson (hadronic recoil), u_T (required to be >200 GeV)
 - Enables to indirectly reconstruct the dineutrino transverse momentum in p_T^{miss} +jets:
 - $\vec{p}_T^{\text{miss}} = -\vec{u}_T$
- Simultaneous fit to hadronic recoil distribution in p_T^{miss} +jets, Z/γ*(μμ)+jets, Z/γ*(ee)+jets, μ+jets, and e+jets regions
 - I+jets used to determine W+jets in other regions
 - POI is r_{inv}, a scaling parameter for the Z → vv process relative to Z → II
- Result : $\Gamma_{inv} = 523 \pm 3$ (stat) ± 16 (syst) MeV
 - Best precision achieved, and first time in a hadron collider!
 - Uncertainty dominated by lepton identification efficiency and jet energy scale

$$\Gamma(Z \to \nu \overline{\nu}) = \frac{\sigma(Z + jets) \mathcal{B}(Z \to \nu \overline{\nu})}{\sigma(Z + jets) \mathcal{B}(Z \to \ell \ell)} \Gamma(Z \to \ell \ell)$$

Measurement of the mass dependence of the transverse momentum of lepton pairs in Drell-Yan production at 13 TeV

- Measurement of φ^*_{η} , p_T in bins of m_{\parallel} , and ratios to the mass peak
 - Splitted in inclusive and >= 1 jet categories
- Comparison to a large variety of theory predictions
 - MadGraph5_aMC@NLO + PYTHIA 8 (tuned)
 - MiNNLO_{PS}: NNLO ME and Pythia8 PS and MPI
 - CASCADE 3 (parton branching TMD method)
 - TMDs from fit to HERA data
 - ArTeMiDe
 - TMD from fits to DY
 - GENEVA (2 types of resummation, NNLL and N3LL)
- Major input to modelling for precision electroweak measurements

τ polarization in Z boson decays

$$P_{\tau} = \frac{1}{\sigma} [\sigma(h_{\tau} = +1) - \sigma(h_{\tau} = -1)] \qquad P_{\tau} = -A_{\tau} = -\frac{2v_{\tau}a_{\tau}}{v_{\tau}^2 + a_{\tau}^2} \approx -2 \cdot \frac{v_{\tau}}{a_{\tau}} = -2(1 - 4\sin^2\theta_W^{\rm eff})$$

Final state	Trigger	Lepton selection	Additional selection	
$ au_{ m h} au_{ m h}$	$\tau_{\rm h}$ (35 GeV) $\tau_{\rm h}$ (35 GeV)	$p_{\rm T}^{\tau_{\rm h}} > 45(40){ m GeV}, \eta^{\tau_{\rm h}} < 2.1$	Med DeepTau iso	
$ au_{\mu} au_{h}$	$\mu(22\mathrm{GeV})$ or $\mu(19\mathrm{GeV})\tau_\mathrm{h}$ (20 GeV)	$p_{\mathrm{T}}^{\mu} > 23 \mathrm{GeV}, \eta^{\mu} < 2.1$ $p_{\mathrm{T}}^{\mu} > 20 \mathrm{GeV}, p_{\mathrm{T}}^{\tau_{\mathrm{h}}} > 30 \mathrm{GeV}, \eta^{\tau_{\mathrm{h}}} < 2.3$	$I_{rel}(\mu) < 0.15$ Med DeepTau iso	$m_T^{\mu} < 50 \mathrm{GeV}$
$ au_e au_{h}$	e(25 GeV)	$p_{\mathrm{T}}^{e} > 30 \mathrm{GeV}, \eta^{e} < 2.1 \ p_{\mathrm{T}}^{ au_{\mathrm{h}}} > 30 \mathrm{GeV}, \eta^{ au_{\mathrm{h}}} < 2.3$	$I_{rel}(e) < 0.15$ Med DeepTau iso	$m_T^e < 50 \mathrm{GeV}$
$ au_e au_\mu$	μ (8 GeV)e(23 GeV) or μ (23 GeV)e(12 GeV)	$p_{\mathrm{T}}^{e} > 15\mathrm{GeV}$, $ \eta^{e} < 2.4$ $p_{\mathrm{T}}^{\mu} > 15\mathrm{GeV}$, $ \eta^{\mu} < 2.4$ $p_{\mathrm{T}}^{\ell} > 24\mathrm{GeV}$ for lead trigger leg	$I_{rel}(e) < 0.15$ $I_{rel}(\mu) < 0.20$	

Motivation :

- foundation for τ polarisation measurements in Higgs—>ττ
- Helps separation with signals in ττ final state searches
- Can measure τ lepton
 asymmetry and infer weak
 mixing angle

2016 dataset, 36.3 fb-1

MC signal : MADGRAPH5 aMC@NLO

- Use of DeepTau MVA discriminant to separate hadronic τ from jets, electrons, muons
- ABCD method to determine MJ and W+jets backgrounds
- Analysis relies on angular distributions of decay hadrons and leptons with respect to mother particle
 - Combined into one optimised observable per event category without loss of sensitivity

τ polarization in Z boson decays

- Polarisation measured in several eta categories and nearly all τ de

ecay modes		$e + \rho$	$\omega_{ m vis}(ho)$
 Strengthen confidence in modelling aspects! 	$ au_{\mu} au_{ m h}$	$ \frac{e + \pi}{\mu + a_1} \\ \mu + \rho $	$egin{array}{c} \omega(\pi) \ \omega(a_1) \ \omega_{ m vis}(ho) \end{array}$
symmetry compatible with SLD and LEP, reaches best precision	$ au_{ m h} au_{ m h}$	$ \frac{\mu + \pi}{a_1 + a_1} \\ a_1 + \pi \\ \rho + \tau_h $	$egin{aligned} \omega(\pi) \ \hline m_{ m vis}(a_1,a_1) \ \Omega(a_1,\pi) \ \omega_{ m vis}(ho) \end{aligned}$
t LHC		$\pi + \pi$	$m_{\rm vis}(\pi,\pi)$

$$\mathcal{P}_{\tau}(Z^0) = -0.144 \pm 0.015 = -0.144 \pm 0.006 \text{ (stat) } \pm 0.014 \text{ (syst)}.$$

Most precise measurement at LHC!

Category

 $e + \mu$

 $e + a_1$

Channel

 $\tau_e \tau_\mu$

 $\tau_e \tau_h$

$$\sin^2 \theta_W^{\text{eff}} = 0.2319 \pm 0.0019 = 0.2319 \pm 0.0008 \text{ (stat) } \pm 0.0018 \text{ (syst)}$$

Discriminate

 $m_{\rm vis}(e,\mu)$

 $\omega(a_1)$

Precision measurement of forward Z boson production at 13 TeV

See also A.B. Martinez talk

- 5.1 fb-1 collected in 2016, 2017, 2018
- Differential cross-section in y, φ^*_{η} , p_T
 - In slices of rapidity for the latter two (double differential)
- Major input to constrain PDF uncertainties at large and small x in m_W and sin²θ_W
- Most precise integrated fiducial cross-section in the forward region

First measurement of Z→µµ angular coefficients in the forward region at 13 TeV

- Z A_i coefficients in 2<y<5
 - Also measured in the low-mass region
- Fit of the two decay angles $\cos(\theta)$ and φ
 - A₀₋₄ are the free parameters
- PDF uncertainty from CT18NNLO eigensets
- Pythia8 deviates from measurement at high p_T, others are in reasonable agreement
- Lam-Tung violation clearly observed

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta\mathrm{d}\phi} \propto (1+\cos^2\theta) + \frac{1}{2}A_0(1-3\cos^2\theta) + A_1\sin 2\theta\cos\phi + \frac{1}{2}A_2\sin^2\theta\cos 2\phi + A_3\sin\theta\cos\phi + A_4\cos\theta + A_5\sin^2\theta\sin 2\phi + A_6\sin 2\theta\sin\phi + A_7\sin\theta\sin\phi,$$

Full phase space Z double differential cross-section (p_T, y)

- Measurement in 22528 bins of (cos θ, φ, p_T, y) extrapolated from fiducial volume to full phase space through measurement of Ais, double differential in (p_T,y)
- **p**_T(**Z**) comparison with N4LL : good agreement (strong effort in LPCC)
- Subsequent measurement of α_S:
 most precise experimental
 measurement, and first time
 using N3LO+N4LL p_T(Z)
 predictions
- Resummation needed at low p_T(Z) to take care of the divergences induced by soft and collinear emissions in fixed-order predictions —> Sudakov peak, sensitive to value of α_S
- Fit uses a profiled χ^2 to the Z (p_T,y) measurement for p_T(Z) < 29 GeV
- Dominant uncertainties from PDFs, experimental, and scale variations

mw reanalysis at 7 TeV

- Motivation: EW fit, indirect BSM searches, need for independent confirmation of CDF result
- Makes large use of detector calibration from initial result
- Result: mw = 80360 ± 5 (stat.) ± 15 (syst.) = 80360 ± 16 MeV
 - Reduction of total uncertainty by 15 % with respect to initial measurement
- Pulls the value closer to the SM prediction from EW fit, as compared to the previous 2017 result

- PDF set (CT10NNLO —> CT18NNLO)
- Statistical analysis (χ² offset —> profile likelihood)
 - W width added as NP parameter
- Multijet background
- EW uncertainties (detector level)
- Dominant uncertainties: lepton calibration, PDFs

Wand Z pt with low-pileup data

- Data with <μ> ~2 taken in 2017 and 2018
 - 255 pb⁻¹ at 5.02 TeV and 338 pb⁻¹ at 13 TeV

Opportunity to probe QCD (perturbative and non perturbative) in clean W events (missing pt

resolution) and in Z at 5.02 TeV

- Main motivation to p_T(W) is to reduce the related modelling uncertainty in m_W measurements
 - Avoid relying on the p_T(Z) measurement (needs assumptions on the extrapolation to W, p_T(W)/p_T(Z) predicted by theory)
- Required dedicated effort on physics modelling and detector calibration

Detector calibrations

- Key ingredient (again!): hadronic system recoiling against vector boson (hadronic recoil), u_T
 - Enables to indirectly reconstruct the neutrino transverse momentum in W $\vec{p}_T^{miss} = -(\vec{u}_T + \vec{p}_T \ell)^T$
- Change in reconstruction w.r.t. mw implementation
 - Uses particle flow objects (PFOs) —> improved resolution
- Calibration of recoil in-situ in Z events
 - Modeling of underlying activity
 - Response and resolution corrections, azimuthal angle
- Lepton calibration uses high pileup data extrapolated to low-pileup conditions wherever possible, otherwise in-situ calibrations, using standard ATLAS techniques

Analysis methodology

- Standard W and Z selections performed
- Multijet background estimated with data-driven ABCD method (improved and) similar as previous mW measurements
- Bayesian unfolding of u_T in the W and $p_T(\ell\ell)$ in the Z, separately in electron and muon channels
 - Binning and number of iterations optimised to minimise total uncertainty in the Sudakov region
 - 9 (25) iterations, 7 GeV bin width at low p_T(W) for the W at 5.02 (13) TeV
 - 2 iterations, 2 GeV bin width at low p_T(Z) for the Z
- electron and muon channels combined with BLUE, all giving good χ^2

Fiducial volume:

- lepton $p_T > 25$ GeV, lepton $|\eta| < 2.5$
- W
- p_T v >25 GeV
- m_T > 50 GeV
- Z:66 < m_II < 116 GeV

- m_T = 77 GeV
- u_T = 16 GeV
- p_T^{miss} = 49 GeV
- $p_T(\mu) = 35 \text{ GeV}$

Run Number: 354396, Event Number: 870863902

Date: 2018-06-28 23:27:00 CEST

Uncertainties

- W: dominant uncertainties from hadronic recoil calibration, unfolding bias, Sherpa vs Powheg and data statistics
- Z : dominated by data statistics

Results: W+

- 5 TeV: Good description of W p_T from ATLAS tunes on 7 TeV Z data at low p_T
- 13 TeV: none of the generators agrees well
- Better performance of Sherpa 2.2.5 and 2.2.1 at high p_T

Results: W-

- Description of W- p_T from ATLAS tunes on 7 TeV Z data at low p_T
 - Good at 5 TeV
 - Bad at 13 TeV
- Reasonable description of the peak at 13 TeV by NNLO+NNLL DYTURBO
- Higher p_T region a bit better in Sherpa 2.2.5 at 5 TeV and better in Sherpa 2.2.1 at 13 TeV
- Powheg+Herwig7 has poor agreement over the full spectrum

LHCD

Results: 5.02 TeV Z

- Decent description from ATLAS tunes on 7 TeV Z data at low p_T
- Powheg+Herwig7 has poor agreement over the full spectrum
- New LHCb preliminary result
 - Dominated by statistics

Source	$\Delta \sigma / \sigma$ [%]
Statistical	1.77
Background	0.48
Momentum scale/smear	0.01
Tracking	1.01
Identification Preliminary	0.25
Trigger	0.54
Efficiency Closure	0.61
FSR	0.18
Total Systematic (excl. lumi.)	1.42
Luminosity	2.00
Total	3.02

LHCD

Results: Integrated cross-sections and cross-section ratios

PDF set	$W^- \rightarrow \ell \nu$	$W^+ \to \ell \nu$	$Z \to \ell \ell$			
TDI SCC	<i>w</i> → <i>cv</i>	<i>**</i> → <i>C V</i>	$Z \rightarrow t\bar{t}$			
	Cross-section	at 5.02 TeV []	ob]			
CT18	1364	2199	320.9			
MSHT20	1351	2185	324.3			
NNPDF3.1	1381	2232	329.8			
Data	1385 ± 16	2228 ± 25	333.0 ± 4.1			
Cross-section at 13 TeV [pb]						
CT18	3410	4462	749.8			
MSHT20	3397	4457	766.1			
NNPDF3.1	3452	4513	771.4			
Data	3486 ± 38	4571 ± 49	780.3 ± 10.4			

- Results agree with previous 13 TeV measurements in ATLAS (early Run2)
- Best precision on fiducial cross-sections for these processes, thanks to clean pileup conditions and best luminosity determination (<1%) achieved at LHC!
- Several centre of mass energies : may further help constrain parameters in parton shower tunes
- Opens the window towards a low-pileup W mass measurement, complementary to high-pileup existing one
 - more weight to transverse mass in these measurements

https://arxiv.org/abs/2212.09379

PDF set	$W^- \to \ell \nu$	$W^+ \to \ell \nu$	$Z \to \ell \ell$			
Ratio $\sigma_{\rm fid}(13{\rm TeV})/\sigma_{\rm fid}(5.02{\rm TeV})$						
CT18	2.499	2.029	2.337			
MSHT20	2.515	2.040	2.362			
NNPDF3.1	2.500	2.022	2.339			
Data	2.517 ± 0.038	2.051 ± 0.031	2.343 ± 0.036			

Summary and outlooks

- Z invisible width in CMS: best precision achieved, and first time in a hadron collider
- $p_T(II)$ and φ^*_{η} in bins of m(II) in CMS: large set of measurement, major input to constrain QCD models!
- т polarization in Z decays (CMS): most precise measurement at LHC, lepton flavour universality test
- LHCb measurements probe complementary phase space : NEW result at 5 TeV
- New preliminary mw measurement by ATLAS, reduces total uncertainty by 15% mostly thanks to better fitting techniques
 - Hot topic: more measurements foreseen in the future at LHC
- Most precise experimental determination of α_s by ATLAS
- NEW preliminary p_T(W) and p_T(Z) measurements thanks to low-pileup data, sensitivity to the Sudakov region will bring improvements in future m_W measurements!
 - 7 GeV bin width, in 8 channels, together with ratios, with uncertainty about 1.5-2% in the peak
 - Comes with most precise integrated W/Z cross-sections
 - Statistics is a dominant effect, in measurement and calibrations: strong case for more low-pileup data taking at LHC

BACKUP

pTW at low mu: Analysis check with the Z: u_T vs $p_T(\ell\ell)$

- Calculate compatibility χ^2 between $p_T(\ell\ell)$ and u_T measurements
 - Taking all correlations into account
 - Powerful check of recoil calibration (absent in p_T(ℓℓ)) and of unfolding bias strategy (almost absent in p_T(ℓℓ))
 - In addition, events are the same —> statistical uncertainties partially cancel
 - Good compatibility is found

do/dp _T [pb/GeV]	ATLAS Internal Vs= 5.02 TeV 255 pb ⁻¹ , Z→ II Di-lepton measurement Recoil measurement
	10-1
Ratio	1.1 1.08 1.06 1.04 1.02 0.98 0.96 0.94 0.92 0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0

	χ²/DOF
5.02 TeV	14.9/14
13 TeV	8.7/16

pT(W): MJ background

Channel	$W^- \rightarrow e^- \nu$	$W^+ \to e^+ \nu$	$W^- o \mu^- \nu$	$W^+ \to \mu^+ \nu$		
5.02 TeV $W \rightarrow \ell \nu$						
MJ background yield	2200	2300	300	500		
Statistics	300 (14%)	340 (14%)	120 (40%)	140 (25%)		
Extrapolation	290 (13%)	340 (15%)	210 (70%)	230 (40%)		
u_{T} -dependence	600 (29%)	800 (40%)	270 (90%)	300 (50%)		
Total uncertainty	700 (32%)	900 (40%)	340 (110%)	400 (70%)		
13 TeV $W \rightarrow \ell \nu$						
MJ background yield	27000	29000	6000	6000		
Statistics	800 (3.0%)	900 (3.0%)	310 (5%)	330 (5%)		
Extrapolation	2400 (9%)	2400 (8%)	1400 (25%)	1500 (23%)		
u_{T} -dependence	4200 (15%)	4300 (15%)	1400 (24%)	1400 (21%)		
Total uncertainty	5000 (18%)	5000 (17%)	2000 (34%)	2000 (31%)		

MJ Background fractions

• 13 TeV electron: 2.4-2.9%

13 TeV muon : 0.5-0.6 %

• 5 TeV electron: 0.5-0.8%

• 5 TeV muon: 0.1%

- Data-driven method is applied using 4 regions and 3 observables (MET, mT, pTlep):
 - Determination of yield with a fraction fit in FR using templates from CR1, then extrapolated to SR with CR2/CR1 ratio
 - Determination of shape in SR using CR2
 - Smoothing procedure at high uT for electron channel at 13 TeV
- Need for dedicated hadronic recoil correction because of the recoil algorithm removing hard activity in non-isolated regions

pT(W): physics modelling corrections

- Samples matching low-pileup conditions
 - W,Z: Powheg+Pythia8 AZNLO CT10 PDF set
 - Alternative : Sherpa 2.2.2 @13TeV, Sherpa 2.2.5@5TeV
 - Diboson: Sherpa 2.2.1 and 2.2.2 (depending on the process)
 - Top: Powheg+Pythia8
 - Alternatives : rad-low, rad-up, Powheg+Herwig7

- Vertex efficiency correction: Correct the efficiency of primary vertex association for W→Iv events in the simulations
- Z_{vertex} reweighting
- QED FSR: Powheg+Pythia8 interfaced to PHOTOS++
- W, Z polarization: Ai's are calculated by DYTURBO at fixedorder NNLO using CT10NNLO PDF
- pTW modelling correction: The truth pTW spectra predicted by Powheg+Pythia8 are reweighted by functions that optimize the reco-level data/MC agreement.

Results: W/Z ratios

Results: W+/W-ratios

- Good description from ~all MCs of the W+/W- ratio at 5.02 TeV
- Bad description at 13 TeV

mw: PDFs

- Dominant uncertainties from
 - PDF Eigenvectors 1 and 29 of CT18
 - Muon momentum scale extrapolation to forward region
- Fit repeated with other PDF sets, profiling helps aligning the stars
- CT18 yields conservative uncertainties when compared to other recent sets and covers differences with them

mw: likelihood fit

- W width added as NP parameter
- Two observables pTl and mT combined afterwards with BLUE using a correlation factor obtained with bootstrap toys (63 ± 3%)
 - pTI has the largest weight (~95%) mainly because of better resolution on the Jacobian peak in such pileup conditions
- Thorough cross-checks of consistency between the χ^2 offset and profile likelihood analyses, using the same PDF set (CT10NNLO)
 - Comparison of results in each category with statistical uncertainties only
 - Slight shift in central value, mainly due to multijet background update

Tau polarisation: distributions uncertainties

Source of uncertainty	Prefit uncertainty per channel			
	$ au_{ m h} au_{ m h}$	$ au_{\mu} au_{ m h}$	$ au_e au_{ m h}$	$ au_e au_\mu$
$e \rightarrow \tau_h$ fake rate	10%	< 40%	10%	-
$\mu ightarrow au_h$ fake rate		< 40%		-
jet $ o au_h$ fake rate	p_{T} -	dependent	$a \approx 20\% \times p$	$_{T}^{jet}/100 { m GeV}$
Tau identification efficiency		$p_{\rm T}$ MVA-I	OM	-
Tau trigger efficiency	$p_{ m T}$ N	IVA-DM	-	-
Electron trigger efficiency	-	-	$p_{ m T}$ N	/IVA-DM
Muon trigger efficiency	-	$p_{\mathrm{T}} \eta$	-	p_{T} MVA-DM
Hadronic tau energy scale	p_1	MVA-DM	< 2%	-
Neutral, charged hadrons energy	2%	2%	2%	-
Muon energy scale	-	0.4-2.7%	-	0.4–2.7 %
Muon to tau fake energy scale	-	1%	-	-
Electron energy scale	Event-depende			-dependent
Electron to tau fake energy scale	-	-	0.8-6.6%	-
Misidentified $ au_{ m h} ightarrow h^{\pm}$	2.8%	2.8%	2.8%	-
Misidentified $ au_{ m h} ightarrow h^\pm \pi^0$	3.2%	3.2%	3.2%	-
Misidentified $ au_{ m h} o h^\pm h^\pm h^\pm$	3.7%	3.7%	3.7%	-
Parton re-weighting	100% for all channels			
Drell-Yan MC re-weighting	100% for all channels			
Top p_T re-weighting	100% for all channels			
MC comparison for signal	100% for all channels			
p_T^{miss} unclustered scale	Event-dependent, but negligible			
p_T^{miss} recoil correction	Event-dependent, but negligible			
Limited MC statistics		-	bin fluctuat	0 0

Tau polarisation : normalisation uncertainties

Source of uncertainty	ce of uncertainty Prefit uncertainty per channe			per channel
	$ au_{ m h} au_{ m h}$	$ au_{\mu} au_{ m h}$	$ au_e au_{ m h}$	$ au_e au_\mu$
Integrated luminosity	1.2%	1.2%	1.2%	1.2%
μ identification efficiency (correlated)	_	2%	_	2%
<i>e</i> identification efficiency (correlated)	_	_	2%	2%
e tracking efficiency (correlated)	_	_	1%	1%
DY cross section	5.6%	5.6%	5.6%	5.6%
tt cross section	4.2%	4.2%	4.2%	4.2%
Diboson cross section	5%	5%	5%	5%
Electro-weak cross sections	4%	4%	4%	4%
W+jets cross section & normalization	4%	10%	10%	20%
QCD normalization	3%	20%	20%	10%
B-tag efficiency	≤0.1%	6 excep	t for t t a	and VV (1%-9%)

Z cross-sections at CMS: more results

Z cross-sections at CMS: more results

Z cross-sections at CMS: more results

F.Balli — W/Z pro

Z cross-sections at CMS: >= 1 jet

Z cross-sections at CMS: >= 1 jet

F.Balli — W/Z precision a

Z cross-sections at CMS: phi*eta

Z cross-sections at CMS: phi*eta

Z Invisible width: uncertainties

r (%)
_