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Why should LHCP care about ML?

= ‘ LHCP should care about machine learning
' because it can improve data analysis,
simulation and modeling, lead to new discoveries,
and foster cross-disciplinary collaboration
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LHC analysis (oversimplified)
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LHC analysis + VL
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Precision Generation
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ML aided simulation chain
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ML aided simulation chain

IIl Precise Simulations Forward

Hadronization Detectors

Hard process Shower

Inverse Analyses & Unfolding E




ML improved simulations

IIl Precise Simulations Forward

Theory Hard process Shower Hadronization Detectors
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ML improved simulations

Phase-space generation

Hard process

BDT [1707.00028, ...], NN [1810.11509, 2009.07819, ...]
NF [2001.05486, 2001.05478, 2001.10028, 2005.12719, 2112.09145, 2212.06172, ...]



ML improved simulations

_ Calculate (differential) cross sections
Phase-space generation
do ~ pdf X |M(x)|* x d®
Hard process

<




ML improved simulations

_ Calculate (differential) cross sections
Phase-space generation
do ~ pdf X |M(x)|* x d®

Hard process

<

Phase space integration

(0) = deﬂx) 0




Flat sampling:

inefficient

I'= <f (x)>x~unif

Monte Carlo integration

[ = def(x)

Importance sampling:

find g close to f

-

fox)
p(x)

>XNP(X)

Multi-channel:
one map for each channel




Importance sampling — VEGAS

Factorize probability
px) = pxy)---p(x,)

—» | @ Computationally cheap

High-dim and rich peaking functions

v —

Fit bins with equal probabillity
and varying width

Peaks not aligned with grid axes
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Parametrize with NF
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MADNIS — Neural importance sampling
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Multi-channel

\Npi(x)
Parametrize with NF

@ unbinned & no grids
— no “phantom peaks”

MADNIS — Neural importance sampling

@ Invertible & tractable Jacobians

— fast training and eval
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Inverting the simulation chain

Inverse Analyses & Unfolding E



Inverting the simulation chain

Parameter inference Unfolding
MEM detector effects

Hard process Shower Hadronization Detectors Events
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Unfolding to
parton level



Unfolding at the LHC

Unfolding
detector effects

Hard process Shower Hadronization Detectors Events

Classifier based aproach Unfolding to
OmniFold [1911.09107], Profiled Unfolding [2302.05390] parton level

Density based approach . .
FCGAN [1912.00477], cINN [2006.06685], —>» Detailed Comparison:

ICINN [2212.08674], OTUS [2101.08944] Arratia et al 2022 JINST 17 P01024 [2109.13243]



Inverting the simulation chain

Parameter inference

MEM

Hard process Shower Hadronization Detectors

Historically — Tevatron
Top mass: DO (98°, 04°), CDF 06’, Fiedler et al. [1003.1316]
Single-top: Review [1710.10699]



Inference with nhormalizing flows

Theory Shower Hadronization
Y am—

Detectors

Theory Known from Likelihood intractable Reconstructed
parameter theory — parametrize with NF momenta
0 X

Ieco

MEM master formula: p(xreco |a) = dehard P(xhard | a)P(Xreco ‘Xhard)



Inference with nhormalizing flows

Theory Shower Hadronization
Y am—

Detectors

Theory Known from Likelihood intractable Reconstructed
parameter theory — parametrize with NF momenta
04 Areco
MEM master formula: P (xreco |a) = dehard P (xhard | @) P (xreco | xhard)

In practice & perform integral numerically



Matrix element method

Heidelberg/Louvain [2210.00019, 23XX.XXXXX]

hadronic, no ISR tHj production: pp — tH
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Matrix element method

Heidelberg/Louvain [2210.00019, 23XX.XXXXX]

hadronic, no ISR tHj production: pp — tH
it — (bBW) (r7) ]

Generated ¢

_ _ 2 . _ -
L iy = J: cosa tt +—1sma tyst|H
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Anomalous coupling
with CP-angle o

Around SM (a = 0):

low total cross section (few events)

low variation of rate
@ kinematics sensitive —— |deal use case for
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Matrix element method

Heidelberg/Louvain [2210.00019, 23XX.XXXXX]

Hard-scattering
truth for 10 hadronic, o = 45°, 400 events Result from

comparison MEM

Statistical 45 50
uncertainty CP-angle a [7]
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Matrix element method

Heidelberg/Louvain [2210.00019, 23XX.XXXXX]

Hard scattering
truth for 10 hadronic, o = 45°, 400 events Result from

comparison MEM

Statistical 45 50
uncertainty CP-angle a [7]

Uncertainties from training of neural network?
_}
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Matrix element method

Heidelberg/Louvain [2210.00019, 23XX.XXXXX]

Hard scattering
truth for 10 hadronic, o = 45°, 400 events Result from 0 hadronic, a = 45°, 400 events

comparison MEM -
— har

reco

45 50
CP-angle « |]

Statistical 45 50
uncertainty CP-angle a [7]

Uncertainties from training of neural network?
_}

Systematic
uncertainty
from training
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Summary and Outlook

Take-home message Future exercises
 Fast and precise predictions with * Full integration of ML-based simulations into
ML-based simulations standard tools & MadGraph,....
 Normalizing flows provide statistically * Make everything run on the GPU and
well-defined likelihoods for inference differentiable (MadJax - Heinrich et al. [2203.00057))
 Account for uncertainties with * Foster collaboration between
Bayesian neural networks theory and experiment

Hadronization Detectors



https://arxiv.org/abs/2203.00057

Summary and Outlook

m- SciPost Phys. 14, 079 (2023)

Machine learning and LHC event generation

Future exercises

Anja Butter’2, Tilman Plehn’, Steffen Schumann®, Simon Badger?, Sascha Caron®:°
Kyle Cranmer”-8, Francesco Armando Di Bello?, Etienne Dreyer!?, Stefano Forte!!,

Sanmay Ganguly'?, Dorival Goncalves'?, Eilam Gross'?, Theo Heimel’, - - . . .

Gudrun Heinrich'4, Lukas Heinrich!®, Alexander Held'®, Stefan Hoche!?, ¢ FLI I I Integ ratl on Of M L_ baSGd Simu Iat IONS | ntO

Jessica N. Howard'8, Philip Ilten'?, Joshua Isaacson!”, Timo JanRen®, Stephen Jones??,

Marumi Kado®2!, Michael Kagan??, Gregor Kasieczka?3, Felix Kling?4, Sabine Kraml?®, Stan d d rd tOO I S — M ad G ra p h LLLL

Claudius Krause?®, Frank Krauss2?, Kevin Kroninger?’, Rahool Kumar Barman!3,

Michel Luchmann!, Vitaly Magerya!4, Daniel Maitre2°, Bogdan Malaescu?,

Fabio Maltoni®®2?, Till Martini®°, Olivier Mattelaer?®, Benjamin Nachman3!32, ® M ake eve ryt h | N g run on th e G P U an d

Sebastian Pitz!, Juan Rojo®*3, Matthew Schwartz**, David Shih?®, Frank Siegert™,

Roy Stegeman!!, Bob Stienen®, Jesse Thaler’®, Rob Verheyen®’, d iffe re nti S | b I e

Daniel Whiteson!®, Ramon Winterhalder?®, and Jure Zupan!?

e Foster collaboration between

Abstract -
theory and experiment

First-principle simulations are at the heart of the high-energy physics research pro-
gram. They link the vast data output of multi-purpose detectors with fundamental the-
ory predictions and interpretation. This review illustrates a wide range of applications P " I
of modern machine learning to event generation and simulation-based inference, includ- M O re d etal I S I n O u r S n owm a Ss re p o rt
ing conceptional developments driven by the specific requirements of particle physics.
New ideas and tools developed at the interface of particle physics and machine learning
will improve the speed and precision of forward simulations, handle the complexity of
collision data, and enhance inference as an inverse simulation problem.
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Summary and Outlook

HEPML-LivingReview

A Living Review of Machine Learning for Particle Physics

physics. The goal of this document is to provide a nearly comprehensive list of citations for those developing and applying these
approaches to experimental phencmenological, or theoretical analyses. As a living decument, it will be updated as often as possible to
incorporate the latest developments. A list of proper (unchanaing) reviews can be found within. Papers are grouped into & small set of
topics to be as useful as possible. Suggestions are most welcome.

Cdownioad review | O Giiub

The purpose of this note is to collect references for modern machine learning as applied ta particle physics. A minimal number of
catagories is chosen in order to be as useful as possible. Ncte that papers may be referenced in more than one cateqgory. The fact that
a paper is listed in this document does not endorse or valicate its content - that is for the community (and for peer-review) to decide.
Furtnermore, the classification here is a best attempt and may have flaws - please let us know if (g) we have missed a paper you think
should be includeg, (b) a paper has been misclassified, or (c) a citation for a paper is not correct or if the journal informaticn is now
available. In order to be as useful as possible, this document will continue to evolve so please check back before you write your next
paper. If you find this review nelpful, please consider citing it using \c'te{hepmllivingreview} in HEFML.kib.

This review was built with the help of the HEP-ML community, the INSPIRE REST AFI, and the moderators Benjamin Nachman, Matthew
~eickert, Claudius Krause, and Ramon Winternalder.

*» Reviews
o Modern reviews

Jet Substructure at the Large Hadron Collider: A Review of Recent Advances in Theory and Machine Learning [DOI]
Deep Learning and its Application to LEC Physics [DOI]

Machine Learning in High Energy Physics Community White Paper [DOI]

Machine learning at the energy and intensity trentiers of particle physics

Future exercises

* Full integration of ML-based simulations into

standard tools =+ MadGraph,....

 Make everything run on the GPU and

differentiable

e Foster collaboration between

theory and experiment

* More details in our Snowmass report

e Stay tuned for many other ML4AHEP applications
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