

Long-lived particles at the LHC

- LLPs exist in the SM and are taken into account in particle detectors design
- but SM LLPs have relatively short travel distance in the LHC detectors
- BSM models with
 - (nearly) degenerate mass spectra
 - small couplings
 - highly virtual intermediate states can populate lifetime space void of expected signatures in the SM
- require creativity and effort in data reconstruction and analysis to recover sensitivity to such scenarios

<u>arXiv:1810.12602</u>

New venues explored with novel approaches

- Pushing tracking capabilities:
 - Disappearing tracks: CMS-PAS-SUS-21-006
 - Displaced jets: CMS-PAS-EXO-21-013
 - Displaced vertices: <u>arXiv:2301.13866</u> (ATLAS)
 - Displaced dimuons: <u>JHEP 10 (2020) 156</u> (LHCb)
 - Slightly displaced muons: <u>arXiv:2305.02005</u> (ATLAS)
- Exploiting muon system:
 - Very displaced muons: <u>arXiv:2305.11649</u> (CMS)
- ECAL timing information:
 - Out-of-time jets: <u>arXiv:2212.06695</u> (CMS)
 - Displaced EM objects: <u>arXiv:2304.12885</u> (ATLAS)
- Checking dE/dx in multiple subdetectors:
 - Multicharged particles: <u>arXiv:2303.13613</u> (ATLAS)
 - Fractionally charged particles: <u>CMS-PAS-EXO-19-006</u>

Disappearing tracks

Trigger: $p_T^{miss} > 120 \text{ GeV};$ prompt e or μ

Innovation:

short and long disappearing tracks (DTk) with dedicated BDT-classifier target $\chi^{\pm} \rightarrow \chi^{0}$ + soft π^{\pm} (undetected)

Calibration: rerun reconstruction on muon tracks with artificially removed hits; consistent with simulation with 10% unc.

- 3 channels: hadronic, e or μ
- 49 search bins in p_T^{miss}, number of (b)jets and DTk, pixel dE/dx
- backgrounds from poorly reconstructed tracks or random hit alignments: estimated from data with ABCD method

Inclusive short-track category

Example SUSY sensitivity

- pure Higgsino model: mass-degenerate χ_1^0 , χ_2^0 , χ_1^{\pm}
- exclude χ_1^{\pm} up to ~200 GeV
- similar to the sensitivity obtained by ATLAS

Higgsinos with prompt and displaced signatures

Talk by Sezen Sekmen on Wed

EWK radiative corrections arXiv:1703.09675

Displaced jet substructure

Trigger: prompt e or μ

Jet tagger is calibrated on displaced tracks in ttbar-enriched region; corrections are within 10-20%

Innovation:

DNN-based jet tagger

arXiv:1912.12238

SM bkg are determined from data with ABCD method on W-candidate mass and jet tagger score variables

- Trained on HNL decays with $d_{xv}>100 \mu m$
- No explicit selection on jet displacement
- Categorization of events in ℓ_2 displacement significance d_{xy}^{sig} and closeness of ℓ_2 and the jet

New HNL sensitivity

Electron dominance

Muon dominance

Democratic coupling

First sensitivity to scenarios with τ -dominance!

Talk by Raffaella Tramontano on Mon

CMS-PAS-EXO-21-013

Displaced vertices and jets

Trigger: multijet

Innovation:

large-radius tracking (LRT)

to recover very displaced vertices; calibrated with K_S in data and MC

drop at small R due to displacement requirement; for R>30 cm - due to minimum N_{hit} requirement

- require several jets and at least one displaced vertex (of at least 5 tracks, m>10 GeV) inconsistent with detector material map
- two different data-driven methods for backgrounds from hadronic interactions, merged vertices and accidental crossings

RPV SUSY sensitivity

Signal Region	Observed	Expected	$S_{ m obs}^{95}$	$S_{\rm exp}^{95}$	$\langle \sigma_{\rm vis} \rangle_{\rm obs}^{95}$ [fb]
$\overline{\text{High-}p_{\mathrm{T}}\text{ jet SR}}$	1	$0.46^{+0.27}_{-0.30}$	3.8	$3.1^{+1.0}_{-0.1}$	0.027
Trackless jet SR	0	$0.83^{+0.51}_{-0.53}$	3.0	$3.4^{+1.3}_{-0.3}$	0.022

Assume pure Higgsinos with mass-degenerate χ_1^0 , χ_2^0 , χ_1^{\pm}

Talk by Mohsen Naseri on Mon

arXiv:2301.13866

Out-of-time trackless jets

Trigger: p_T^{miss} > 120 GeV

Innovation:

trackless delayed jet tagger

DNN with 22 input features, including ECAL timing (400-600 ps resolution)

Calibrated on $Z \rightarrow \ell \ell \gamma$, $W \rightarrow e \nu$ events with artificially added 1-2 ns delay

- require at least two TD-tagged jets and p_T^{miss} > 200 GeV
- cosmic ray muon and beam halo veto
- data-driven matrix method for bkg estimation with misID probability measured in a data control region

Electroweak SUSY sensitivity

Assume pure Higgsinos with mass-degenerate χ_1^0 , χ_2^0 , χ_1^{\pm}

Talk by Ang Li on Mon

arXiv:2212.06695

11

138 fb⁻¹ (13 TeV)

 $c \tau_{\chi} (m)$

 $B(\chi \to H \ \widetilde{G}) = 50\%; B(\chi \to Z \ \widetilde{G}) = 50\%$ 95% CL limits, m_y = 1000 GeV

---- Theory

---- Median expected 68% expected

95% expected

Observed

Electromagn

CMS

0.1

Displaced EM objects

Trigger: two high-p_T photons

Innovation:

displaced diphoton vertex (DDV)

using precise LAr timing (σ ~200 ps) and pointing capabilities (σ ~15 mm)

Calibrated on W \rightarrow e ν , Z \rightarrow ee events

- require two photons (0 < t_γ < 12 ns) forming a DDV and p_Tmiss > 30 GeV
- data-driven method to measure time templates for DDV with real and misidentified photons

Electroweak SUSY sensitivity

500

600

400

700

 $\mathsf{m}(\tilde{\chi}_1^0)$ [GeV]

decays via H

200

300

10⁰

100

higgsino decays

13

Talk by Mohsen Naseri on Mon

higgsino lifetime

too short

arXiv:2304.12885

Slightly displaced muons

Trigger: regular dimuon

Innovation:

target blind spot of previous searches by concentrating on small displacements

- require two displaced muons (0.6 < d_0 < 3 mm) with m($\mu\mu$) > 200 GeV
- data-driven ABCD method with d_0 and $m(\mu\mu)$ to estimate SM background

14

Sensitivity to smuons

15

 Closes the gap between the reinterpreted prompt and large-d₀(> 3mm) searches

the first explicit reinterpretation of a search with prompt leptons into the long-lived regime

Talk by Mohsen Naseri on Mon

arXiv:2305.02005

Very displaced muons

Trigger: $p_T^{miss} > 120 \text{ GeV}$

Model: Inelastic dark matter production and decay

Innovation:

displaced muon reconstruction with muon system only (dSA)

Calibrated with cosmic muons, $Z \rightarrow \mu\mu$ and $J/\psi \rightarrow \mu\mu$ events

- require two collimated dSA muons, p_T^{miss} > 200 GeV and 1-2 jets
- data-driven ABCD method with min-d_{xy} and muon isolation for SM background

Sensitivity to DM

Low **4**

$$\Delta = m(\chi_2) - m(\chi_1)$$

$$m(A) = 3m_1$$

y – "interaction strength"

Weaker exclusion as $\sigma \sim 1/\Delta^5$

Talk by Ang Li on Mon

arXiv:2305.11649

Dark photon $\rightarrow \mu\mu$ @ LHCb

Innovation:

dedicated dimuon trigger

material map veto to suppress conversion

- target 214 < m(A') < 350 MeV region
- require muons inconsistent with originating from PV, with $p_T > 0.5$ GeV and p > 10 GeV
- A' should be consistent with originating from a PV and be isolated from other tracks
- veto material interactions and stay below K_s mass
- veto events selected by inclusive heavy-flavor software trigger
- signal extraction using mass bump-hunt, scanning both mass and lifetime variables

the only displaced dark photon search at the LHC!

Dedicated LLP experiments @ CERN

NA62 @ SPS for kaon physics

FASER @ LHC for LLP searches

Dark photons @ NA62

Innovation:

Running in beam-dump mode

Production:

- require dilepton vertex with A' flight vector pointing back to the target
- track timing coincidence with the trigger
- no in-time activity at large angle veto detectors
- combinatorial background from mixing single-track events in data

65m decay region, 10⁻⁶ mbar vacuum

[HNL, ALP, A', S...]

[Target is

removed! KTAG GTK

[Copper collimator

closed (TAXes) =

STRAW

 prompt background by muon secondaries from simulation corrected with data

Decay:

 Z_{TAX} [m]

muons

arXiv:2303.08666

A. Kleimenova @ La Thuile

Dark photons @ NA62

- results based on full 2021 dataset of $(1.4 \pm 0.3) \times 10^{17}$ POT
- plan to collect 10¹⁸ POT in 2022-2025
- other final states $(\gamma\gamma, \pi^+\pi^-\gamma)$ are being explored

More in a talk by Slava Duk on Fri

Dark photons @ FASER

Innovation: **New experiment!**

located 480 m away from ATLAS IP shielded by 100 m of rock

Scintillator veto

ð

- two good tracks and high energy deposit in ECAL, nothing in Veto detectors
- noncollision background from noncolliding bunches or runs w/o a beam
- neutrino background from simulation
- expect 0.0020±0.0024 events

Expected ν background

Signal region: 0 events observed

Dark photons @ FASER

- Better sensitivity at lower masses compared to NA62
- FASER sensitivity is in the region motivated by the dark matter thermal relic density (red line, model-dependent):
 - chosen parameters lead to visible dark photon decays
 - region below the line leads to an overabundance of DM and would be excluded cosmologically

NA62 result overlaid

More in a <u>talk by Noshin Tarannum</u> on Tue

Future prospects: less model-dependence

crazy reconstruction ideas triggers

- Yesterday's Nobel prizes are today's calibration channels
 - ATLAS/CMS/LHCb Run 3 review: <u>arXiv:2110.14675</u>
- New Run 3 hardware-stage (L1) trigger features:
 - ATLAS/CMS: **HCAL** timing (0.6/1 ns resolution)
 - ATLAS/CMS: ECAL/HCAL ratio (already exists in ATLAS Run 2) + timing
 - ATLAS/CMS: displaced **muon** (remove pp vertex constraint)
 - ATLAS/CMS: showers in muon system (target neutral LLPs decays)
 - LHCb: fully software trigger, 30 MHz event reconstruction
- HL-LHC: track trigger will allow to have track displacement in L1
 - ATLAS-TDR-029: "Technical Design Report for the Phase-II Upgrade of the ATLAS TDAQ System"
 - CMS-TDR-021: "The Phase-2 Upgrade of the CMS Level-1 Trigger"

Outlook

- Run 3 is an imminent testing ground for many new ideas from Run 2
- LLP program is continuous burst of creativity in data-handling:
 - non-conventional signatures require non-conventional detector usage
- It benefits from 3 ab⁻¹ being collected over a decade:
 - can expect many new ideas to be born and realized during HL-LHC
 - proposed Forward Physics Facility (FPF) could house several new experiments for LLP searches in the forward region for the HL-LHC

Hardware commissioning

More in a talk by Roshan Mammen Abraham on Tue

Extra

Multicharged particles

Data/MC

Triggers:
single muon;
p_T^{miss} > 90/110 GeV;
late-muon trigger

Innovation: anomalous dE/dx in pixel, transition radiation tracker or muon system

Calibrated with Z→µµ events; trigger efficiency is corrected for possible late arrival to muon system

- require at least one "combined" muon with high dE/dx in the pixel, TRT or muon system
- main bkg from muons with high ionization due to occupancy effects
- estimated from data with ABCD method

Multicharged particles

- 4 events observed in the z=2 search region with 1.6 ± 0.4 (stat) ± 0.5 (syst) expected
- No events observed in the z>2 search with 0.034 \pm 0.002 (stat) \pm 0.004 (syst) expected

Fractionally charged particles

Trigger: single muon

Innovation: dE/dx measurement in the tracker

Calibrated with $Z \rightarrow \mu\mu$ events

- require one or two (outside of Z peak) tracks with a number of hits with low dE/dx value
- veto tracker regions affected by radiation damage
- estimate bkg by extrapolating from control region with binomial fit

Fractionally charged particles

- For too low charges energy deposits in the tracker often fall below the readout threshold leading to loss of the signal efficiency
- Significant increase of sensitivity compared to previous searches

30

Displaced dimuons

Innovation:

dedicated dimuon trigger

material map veto to suppress conversion

- require dimuon pair with SV transverse displacement between 12 and 30 mm
- new resonance X should be consistent with originating from PV
- veto material interactions and K_s
- interpreted in wide range of X lifetimes

