

Status of the LHC

Dr. Rhodri Jones Head of the CERN BEAMS Department 22/05/2023

Recap of LHC Performance in 2022

- Striking performance for first year after LS
- > 40 fb⁻¹ to ATLAS/CMS
- ~1 **fb**-1 to LHCb
- 0.03 fb⁻¹ to ALICE

What was new in 2022

- Beta* levelling routinely used for first 5-6 hours of every fill
 - Fully automated levelling for IP1 / IP5 ($\mu = 54 \pm 2.5\%$)
 - Luminosity jumps below ~5% (as requested by Experiments)
 - Inner Triplet cooling for collision debris limited to ~2×10³⁴ cm⁻² s⁻¹

- Crystal collimators demonstrate that machine is ready for Run 3 HL-LHC ion operation
- Quench test results underline that collimation system is ready for HL-LHC proton operation

120 m

beam2

beam2

What we Learnt in 2022

Dealing with electron cloud

Sector 7-8 emerged degraded from LS2, determining heat load limitation of LHC

Long Shutdown 1 (2013-2015)

 Provoked significant degradation of heat loads in S12 & S23 & S78 & S81

Long Shutdown 2 (2019-2022)

 Provoked significant degradation of heat loads in S56 & S67 & S78

What we learnt in 2022

22/05/2023

Available Cryo power

- Standard 25ns fill pattern adjusted to run at electron cloud limit in Sector 7-8
- Bunch intensity increased slowly up to 1.5×10¹¹ p/b as machine conditioned

NB: the capacities given for the "eco mode" are calculations, special measurements would be needed to better assess these numbers

What we learnt in 2022

Energy Management

- Cryogenics accounts for over half of LHC machine energy consumption (271 GWh out of 537 GWh)
- Eco mode implemented & used for all compatible periods (Commissioning, Ion Run, Long stops, ...)
- ~20 GWh saved by using the Eco mode in 2022

Progress in 2023 & Looking Towards the Rest of Run 3

Injector Performance

STANDARD 25ns

Injector Performance

- Excellent progress in performance ramp-up for protons
- PSB and PS reached LIU intensity & brightness with sufficient operational margin
- SPS intensity target at extraction in 2023 is 1.8×10¹¹ p/b
 - Reached with full trains
 - Tuning still ongoing to ensure long term stability and homogeneity of intensity and emittance

Running in 2023

Dealing with Electron cloud in the LHC

- Alternative filling schemes 8b4e
 - Introduces gaps on rising slope of the e-cloud build-up so that the cloud never reaches full saturation
 - Strong e-cloud reduction confirmed up to 1.7×10¹¹ p/b in 2022 test
 - ~50-65% reduction of total heat load per sector
 - o Could run cryo in Eco-mode up to ~1.8×10¹¹ p/b

Status of the LHC - LHCP 2023

Running in 2023

Dealing with Electron cloud in the LHC

- Alternative filling schemes Hybrid 8b4e
 - Best compromise for maximising performance while keeping heat loads within acceptable limits obtained with hybrid schemes, mixing 25 ns & 8b+4e beams
 - Fraction of 8b+4e beam tuned to adapt to the cooling capacity, to maximize the achievable number of bunches

Test in 2022 demonstrated 15% reduction of heat load in S78 with hybrid scheme

Status of the LHC - LHCP 2023

Intensity Reach for 2023 and Beyond

The intensity reach for different filling schemes is determined by the limitation in S78

	4x72b	5x48b	5x36b	hyb-48b	hyb-36b	8b+4e
N bunches	2760	2748	2496	2452	2464	1972
Intensity	1.1e11	1.2e11	1.5e11	1.75e11	2e11	-
Int. lumi/day [fb ⁻¹]	0.80 -27%	0.93 -15%	1.10 ref.	1.19 +8%	1.24 +13%	1.09 -1%

Lumi estimates (LPC calculator) with μ =54, L_{lev} < 2e34 cm⁻² s⁻¹

- Hybrid 56b(8b4e)+5×36b the most promising option
 - Use of hybrid scheme in 2023 confirms heat-load benefit with intensity of 1.5E11 p/b reached to date
 - Run 3 bunch intensity limited to 1.8e11 p/b by LHC beam extraction system until HL-LHC upgrade

Matching Pile-up Limit and Triplet Cryo-Capacity

Collision Pairs (IP1 & 5)

$$\mu = 60$$

Positive evaluation from both ATLAS & CMS, with no expected negative impact on physics performance or detector readout and trigger

- $\mu = 60$ (Lpeak = 2 x 10³⁴ cm⁻²s⁻¹) positive evaluation
- $\mu = 65$ (Lpeak = 2.2 x 10^{34} cm⁻²s⁻¹) under consideration
- $\mu = 70$ (Lpeak = 2.4 x 10³⁴ cm⁻²s⁻¹) strongly disfavoured

2023 Performance Estimate

A typical 2023 fill:

Evolution of beam parameters

 Impact from IBS, SR, burn-off & extra emittance blowup

Optics

- Discrete β* steps from 1.2 m to 30 cm
- Accompanied by appropriate increase in crossing angle

Levelling on pile-up

• $60 \pm 2.5\%$ (target for 2023)

Luminosity levelling

• 2×10³⁴ cm⁻² s⁻¹ cryo-cooling limit

2022 Simulation

Fill from last week

2023 Current Status

Ion Operation in 2023

Crystal Collimation

- Good performance demonstrated during 2022 Pb test
- Faulty crystal unit to be re-installed during the first technical stop (June)

Alleviation of collision losses

- IR1/5: Orbit bumps successfully deployed in Run 2
- IR2: new dispersion suppressor collimator (TCLD)

Slip-stacked beams from the SPS

- 8-bunch trains successfully used in 2022 Pb test
- 56-bunch trains to be commissioned during 2023

First ion optics commissioning already successfully completed

Measurement and correction throughout the cycle using protons

Ion energy choice for Run 3: 5.36 TeV per nucleon-nucleon collision (6.8 Z TeV)

2-batches, symmetric

Survival of the Interaction Region Focusing Magnets (Triplets) in Run 3

Triplet ageing due to Irradiation

Design Criteria

- Main quadrupoles to withstand > 30 MGy
- Correctors to withstand > 7 MGy
- Actual limits not known

Dose distribution affected by:

- Luminosity & Beam energy
- Crossing angle orientation, sign and amplitude
 - Regular inversion of ATLAS crossing angle polarity to minimize integrated radiation dose
- Beam screen orientation
- IP transverse position wrt triplet
- Triplet quadrupole polarity

IR1 – 300 fb⁻¹ – 7TeV

Triplet Task Force - Possible Mitigation

Radiation dose distribution significantly affected by triplet quadrupole polarity and crossing angle orientation

IR1 – 300 fb⁻¹ – 7TeV

Triplet Task Force – Summary & Outlook

Quite some uncertainty on the radiation resistance of insulators in particular for the correctors

- Triplet polarity inversion a promising option for reducing the peak integrated dose
 - To be done in 2024 if we want to gain in lifetime
 - Feasibility of final solution being investigated
 - Report due by end of May 2023

- Operational scenarios in case of equipment failure
- Mitigation for other elements of concern e.g. warm separation dipoles, correctors

Status of the LHC - LHCP 2023

Monitoring and results of irradiation tests

Advancement with High Luminosity LHC

HL-LHC Civil Engineering Completed

22/05/2023

Progress with the Nb₃Sn Interaction Region Magnets

Status of the LHC - LHCP 2023

16 MQXFA (4.2m long US Magnets) to be installed

- Endurance test (50 quenches) of 4.2m long magnet successful
- 6 out of 8 magnets so far accepted after cold tests
- First 2 magnet cold-mass assembled & successfully tested

8 MQXFB (7.2m long CERN Magnets) to be installed

- Performance limitations identified in first 3 prototypes
- Studied in detail with 3 issues to be addressed
 - Revised welding procedure (successfully tested)
 - Revised assembly procedures (successfully tested)
 - New coil production procedure (underway)

LQXFA/B-01 Quench Performance

Summary & Outlook

LHC Run in 2023

- Hybrid 56b (8b4e) + 5x36b the most promising option
- Intensity up to 1.8×10¹¹ protons per bunch
- Extended beta* levelling range from 1.2 m to 30 cm
- Levelling on pile-up up to $\mu = 60$
- Aiming to integrate 1 fb⁻¹ per 15h fill

Triplet Longevity

Triplet Task Force has identified several mitigation measures to increase lifetime beyond 300 fb⁻¹

Status of the LHC - LHCP 2023

Most promising is inversion of triplet polarity to be considered for 2024

HL-LHC

- Significant progress with all main work packages
 - Encouraging news from both US and CERN Nb₃Sn magnet programmes
 - Built-up a good understanding of this new superconducting magnet technology
- Main civil engineering completed with only vertical cores remaining to be excavated

Run 3 Schedule

22/05/2023