Run: 349051

Event: 864471013

2018-04-28 00:07:26 CEST

Long Lived Particle results from ATLAS experiment (excluding Heavy Neutral Leptons)

Mohsen Naseri (Carleton University) on behalf of the ATLAS collaboration

INTRODUCTION

- We know BSM extensions are needed to account for unexplained phenomena, in particular dark matter
- Many of the BSM models (e.g. SUSY) produce invisible particles → large missing energy!
 - no such missing energy signatures have been observed
- Another possibility is that BSM particles produced at LHC are moderately long lived, LLP
 - no or only little missing energy expected compatible with observation
 - more challenging final states wide range of compelling models exists

Hidden Valleys

Portal models

$$H \longrightarrow \bigcirc \cdots H$$

$$Z/\gamma$$
 \bigcirc $--- Z'/\gamma$

Axion-like particles

THEORETICAL MOTIVATION

Long-lived particles with macroscopic lifetime(even in SM) can arise when:

- small phase space (suppression, small mass-splitting)
- small couplings
- small matrix element (off-shell mediator)

$$\frac{1}{\tau} = \Gamma \propto g^2 |\mathcal{M}|^2 \Phi$$

Searches for long-lived particles are signature driven → depends on mass, charge, and decay position in detector

- multiple search scenarios are possible:
 - they can decay to quarks, gluons, leptons, invisible particles leaving missing energy

LLP signatures are experimentally challenging:

- MC simulations may not accurately model backgrounds
- require innovative and dedicated trigger algorithms
- custom reconstruction
- ML tools for background elimination
- fully data-driven background estimation techniques

LLP SEARCHES @ ATLAS EXPERIMENT

Specific theories can suggest new signatures to explore:

ability to re-interpret results in a different model to ensure full exploration

A lot of searches in this sector!

- in the following few examples based on signatures.
- all results use full Run-2 dataset: 139 fb⁻¹ at √s = 13 TeV

S Search	

ATLAS Search	Signature	arXiv	Paper release
Multicharge particles	Track with large dE/dx	arXiv:2303.13613	23 March 2023
Heavy charged particles	Track with large dE/dx	arXiv:2205.06013	12 May 2022
Displaced photonics vertex	Di-photon or di-e DV + MET	arXiv:2304.12885	25 April 2023
Displaced photons	1, >= 2 photon + lepton + MET	arXiv:2209.01029	2 Sep. 2022
Displaced Hadronic vertices	DV + jets	arXiv:2301.13866	1 Feb 2023

The summary plots are not up to date, but do show nicely the breadth of the searches and their reach

MULTI-CHARGED PARTICLES (MCPs)

Many theories predict multi-charge particles

Benchmark model: MCP produced in pairs via Drell-Yan or photon-fusion mode

Motivation: multi-charged particles deposit more energy in trackers than SM particles

$$rac{{
m d}E}{{
m d}x} \propto rac{z^2}{eta^2}$$
 charge / e - velocity

Signature: muon-like tracks with anomalously large dE/dx significance in the inner-tracking (Pixel/TRT) and muon (MDT) detectors and/or fraction of high-threshold TRT hits.

$$S(dE/dx) = \frac{dE/dx - \langle dE/dx \rangle_{\mu}}{\sigma(dE/dx)_{\mu}}$$

Strategy:

- trigger on prompt muons ($\beta > 0.65$), missing energy, and late muons ($0.4 < \beta < 0.8$)
- at least one muon reconstructed in both the tracker and the muon spectrometer

arXiv:2303.13613

Background: instrumental effects and δ -rays, estimated using data driven ABCD method

ABCD parameters

q = 2e

- 1. $S > 13 \sigma$ in Pixel
- 2. $S > 2 \sigma \text{ in TRT}$
- 3. $S > 4 \sigma \text{ in MDT}$

$$q = [3, 7] e$$

- 1. Saturated TRT signal (70%)
- 2. $S > 7 \sigma \text{ in MDT}$

No excess observed \rightarrow exclusion limits on σ vs m_{MCP} and Z_{MCP}: $m_{MCP} > 1.05$ TeV (z=2) and $m_{MCP} > 1.57$ TeV (z=7)

Search category	$N_{ m data}^{ m A~observed}$	$N_{ m data}^{ m B~observed}$	$N_{ m data}^{ m C~observed}$	$N_{ m data}^{ m D\ expected}$	$N_{ m data}^{ m D~observed}$
z = 2	41 674	5024	13	$1.6 \pm 0.4 \text{ (stat.)} \pm 0.5 \text{ (syst.)}$	4
z > 2	192 036 934	15 004	441	$0.034 \pm 0.002 \text{ (stat.)} \pm 0.004 \text{ (syst.)}$	0

Motivation: slow, massive charged particles deposit more energy in trackers than SM particles

Signature: missing energy and well-isolated track or muon with large p_⊤ and with large dE/dx

SUSY benchmark models

Measure <dE/dx> in pixel tracker \longrightarrow Convert to $\beta\gamma$ using Bethe-Bloch relation \longrightarrow Calculate mass = p / $\beta\gamma$

Strategy: select events with $E_T^{\text{Miss}} > 170$ GeV, track with $p_T > 120$ GeV and dE/dx > 1.8 MeV g⁻¹ cm²

Carleton ATLAS

arXiv:2205.06013

The ranges shown by dashed lines correspond to the acceptance of the search from the dE/dx

Mohsen Naseri | Carleton University

7

Background: random large dE/dx from Landau tail, fully data-driven

- for most of the SR, the observed data agrees well with the predicted background.
 - significance of 3.6σ observed for a mass window [1.1, 2.8] TeV in high-dE/dx SR.
 - global significance: 3.3σ
 - no obvious pathologies were identified in the measurement of these events
 - cross-check with calorimeter/muon system find all tracks to have β consistent with 1.

arXiv:2205.06013

Background: random large dE/dx from Landau tail, fully data-driven

- for most of the SR, the observed data agrees well with the predicted background.
 - significance of 3.6σ observed for a mass window [1.1, 2.8] TeV in high-dE/dx SR.
 - global significance: 3.3σ
 - no obvious pathologies were identified in the measurement of these events
 - cross-check with calorimeter/muon system find all tracks to have β consistent with 1.

arXiv:2205.06013

arXiv:2304.12885

Non-prompt photons from BSM decays before EM Calo

1. Photons from same decays

- LLP particles, originating displaced H→γγ or Z→ee decays
- two photons produced in decay of same LLP → Di-photon trigger
- trajectory based on shower shape
- signal region for high missing energy and at least 2 trigger matched photons
- exploit LAr arrival time (t_{avg}) as well as the mass and 2D position (ρ) of the displaced vertex \rightarrow average timing in calo $t_{avg} = (t_{\gamma 1} + t_{\gamma 2})/2$

displacement
$$\rho = \sqrt{V_R^2 + V_Z^2}$$

DISPLACED PHOTONS

Non-prompt photons from BSM decays before EM Calo

2. Photons from different decays

- two non pointing photons coming from different of LLPs in association with leptons
 - per photon timing in calo tγ, single lepton trigger
- exploited EM calorimeter info for precise pointing and timing measurements
- signal region for 1 and ≥ 2 photons
- isolated photons, ≥1 lepton and high missing energy

arXiv:2209.01029

pointing
$$\Delta z_{\gamma} = |z_{\nu} - z_{PV}|$$

DISPLACED PHOTONS

Background: - real prompt photons

- fake photons (electrons or jets faking photons)

1. Photons from same decays

- likelihood fit over t_{avg} spectrum in non-overlapping bins of ρ,
- background estimated from t_{avg} templates from CR

arXiv:2304.12885

No excess observed and limits set as a function of mass

2. Photons from different decays

likelihood fit performed over timing distribution in non-overlapping bins of $|\Delta z|$

arXiv:2209.01029

arXiv:2301.13866

- search for massive LLPs decaying in the Inner Detector into hadrons
- benchmark models are SUSY scenarios:
 - neutralino decaying via small RPV coupling to three SM quarks
 - production via gluinos that each promptly decay to two SM quarks and neutralino

Signature: looking for an excess in multi-jet events with displaced vertices (large mass, multiple tracks)

→ displaced vertices (DVs) and multi-jets → jet triggers

algorithm: Displaced Vertex reconstruction possible up to 300 mm (Large Radius Tracking)

- search for massive LLPs decaying in the Inner Detector into hadrons
- benchmark models are SUSY scenarios:
 - neutralino decaying via small RPV coupling to three SM quarks
 - production via gluinos that each promptly decay to two SM quarks and neutralino

Signature: looking for an excess in multi-jet events with displaced vertices (large mass, multiple tracks)

→ displaced vertices (DVs) and multi-jets → jet triggers

algorithm: Displaced Vertex reconstruction possible up to 300 mm (Large Radius Tracking)

Strategy:

- \geq 1 displaced vertex with high-mass ($m_{DV} > 10$ GeV) and high track multiplicity ($n_{Trk} \geq 5$)
- 2SRs targeting RPV EWK or RPV Strong SUSY
 - $\geq 4 7$ high-p_T jets and trackless jets (p_T > 55 250 GeV)

Background sources:

- · hadronic interactions with detector material
- accidental track-crossings
- merged vertices

Fully data driven background estimate, performed in two steps:

- 1. calculate probability of finding a SR-like DV produced in proximity to a jet using track jets in CRs
- 2. apply probability to track jets in events passing event-level SR selection
 - estimate nevents with a DV in the SR

$$p_{\mathrm{DV-jet}}^{SR} = p_{\mathrm{DV}\leftrightarrow\mathrm{track-jet}}^{CR} f^{CR\to SR}$$

Signal Region	Expected	Observed
High- $p_{\rm T}$ jet SR	$0.46^{+0.27}_{-0.30}$	1
Trackless jet SR	$0.83^{+0.51}_{-0.53}$	0

• The pair-production of electroweakinos with masses below 1.5 TeV is excluded for mean proper lifetimes in the range from 0.03 ns to 1 ns.

SUMMARY AND CONCLUSION

- In the last few years, ATLAS have produced a large variety of searches for long-lived particles
- No obvious sign of new physics observed (yet)
- We have a very exciting LLP plan for Run-3

ATLAS Search	Signature	arXiv	Paper release
Multicharge particles	Track with large dE/dx	arXiv:2303.13613	23 March 2023
Heavy charged particles	Track with large dE/dx	arXiv:2205.06013	12 May 2022
Displaced photonics vertex	Di-photon or di-e DV + MET	arXiv:2304.12885	25 April 2023
Displaced photons	1, >= 2 photon + lepton + MET	arXiv:2209.01029	2 Sep. 2022
Displaced Hadronic vertices	DV + jets	arXiv:2301.13866	1 Feb 2023

Run3 is here!

- More statistics for rare decays
- Lots of exciting developments that will enhance the discovery potential of the Run 3 dataset:
 - many dedicated LLP triggers
 - ability to reconstruct displaced tracks for all the events recorded
- Already 36 fb⁻¹ of 13.6 TeV data collected

BACKUP

MULTI-CHARGED PARTICLES (MCPs)

arXiv:2303.13613

Search category	Preselection	Tight selection	Final selection
	Combined muon with:		Tightly selected candidate with:
2		Preselected candidate with	
z = 2	'medium' identification criteria,	S(pixel dE/dx) > 13	S(TRT dE/dx) > 2,
	$p_{\mathrm{T}}^{\mu}/z > 50\mathrm{GeV},$		S(MDT dE/dx) > 4
	$p_{\rm T}/z > 10{\rm GeV},$		Preselected candidate with:
~ > 2	$ \eta < 2.0,$		
z > 2	no other particles with	_	TRT $f^{HT} > 0.7$,
	$p_{\rm T}/z > 0.5$ GeV within $\Delta R = 0.01$		S(MDT dE/dx) > 7

arXiv:2205.06013

Category	Item	Description	
Event topology	Trigger	Unprescaled lowest-threshold $E_{ m T}^{ m miss}$ trigger	
	$E_{ m T}^{ m miss}$	$E_{\rm T}^{\rm miss} > 170~{\rm GeV}$	
	Primary vertex	The hard-scatter vertex must have at least two tracks	
Events are required	l to have at least one track fulfi	illing all criteria listed below; tracks sorted in p_T descending order	
Track kinematics	Momentum	$p_{\mathrm{T}} > 120 \mathrm{GeV}$	
	Pseudorapidity	$ \eta < 1.8$	
	$W^{\pm} \to \ell^{\pm} \nu \text{ veto}$	$m_{\rm T}({\rm track}, \vec{p}_{\rm T}^{\rm miss}) > 130 {\rm GeV}$	
Track quality	Impact parameters	Track matched to the hard-scatter vertex; $ d_0 < 2 \text{ mm}$ and $ \Delta z_0 \sin \theta < 3 \text{ mm}$	
	Rel. momentum resolution	$\sigma_p < \max\left(10\%, -1\% + 90\% \times \frac{ p }{\text{TeV}}\right) \text{ and } \sigma_p < 200\%$	
	Cluster requirement (1)	At least two clusters used for the $\langle dE/dx \rangle_{trunc}$ calculation	
	Cluster requirement (2)	Must have a cluster in the IBL (if this is expected), or	
		a cluster in the next-to-innermost pixel layer	
		(if this is expected while a cluster is not expected in IBL)	
	Cluster requirement (3)	No shared pixel clusters and no split pixel clusters	
	Cluster requirement (4)	Number of SCT clusters > 5	
Vetoes	Isolation	$\left(\sum_{\text{trk}} p_{\text{T}}\right) < 5 \text{ GeV (cone size } \Delta R = 0.3)$	
	Electron veto	EM fraction < 0.95	
	Hadron and τ -lepton veto	$E_{\rm jet}/p_{ m track} < 1$	
	Muon requirement	SR-Mu: MS track matched to ID track; SR-Trk: otherwise	
Pixel dE/dx	Inclusive	Low: $dE/dx \in [1.8, 2.4] \text{ MeV g}^{-1} \text{cm}^2$	
	INCIUSIVE	High: $dE/dx > 2.4 \text{ MeV g}^{-1}\text{cm}^2$	
		IBL0_Low: $dE/dx \in [1.8, 2.4] \text{ MeV g}^{-1} \text{cm}^2 \text{ and } 0F_{IBL} = 0$	
	Binned	IBLO_High: $dE/dx > 2.4 \text{ MeV g}^{-1}\text{cm}^2 \text{ and } OF_{IBL} = 0$	
		IBL1: $dE/dx > 1.8 \text{ MeV g}^{-1}\text{cm}^2 \text{ and } OF_{IBL} = 1$	

MUON PAIRS WITH SMALL DISPLACEMENTS

arXiv:2305.02005

Signature: LLPs decaying slightly displaced in the Inner Detector (ID) with a lifetime of O(1 - 10 ps), filling a gap between prompt and displaced searches:

- a pair of opposite-charged muons
- large impact parameter

Set of Regions	Lower displacement region	Higher displacement region	Threshold $m_{\mu^+\mu^-}$	Additional cut
1	$0.1 \le d_0 < 0.3$	$0.6 \le d_0 < 3 \text{ mm}$	$200 \mathrm{GeV}$	-
2	$0.1 \le d_0 < 0.3$	$0.6 \le d_0 < 3 \text{ mm}$	$140 \mathrm{GeV}$	-
3	$0.1 \le d_0 < 0.3$	$0.6 \le d_0 < 1.3 \text{ mm}$	$125 \mathrm{GeV}$	$\Delta R_{\mu^{+}\mu^{-}} > 3 \text{ rad.}$

Background: B-hadron decays

→ ABCD data driven method using dµ+ and dµ- impact parameters as discriminating variables

- no excess observed over expected background in the SRs
- smuon mass up to 520 GeV and lifetime down to 1 ps excluded at 95% confidence interval
- a model-dependent 2D exclusion limit for GMSB SUSY is extracted
 - bridges a gap between the displaced leptons and prompt analyses

DISPLACED VERTEX + JETS

Signal Region	High-p _T jet SR	Trackless jet SR
Jet selection	$n_{\text{jet}}^{250} \ge 4 \text{ or } n_{\text{jet}}^{195} \ge 5 \text{ or } n_{\text{jet}}^{116} \ge 6 \text{ or } n_{\text{jet}}^{90} \ge 7$	Fail High- $p_{\rm T}$ jet selection, $n_{\rm jet}^{137} \ge 4 \text{ or } n_{\rm jet}^{101} \ge 5 \text{ or}$ $n_{\rm iet}^{83} \ge 6 \text{ or } n_{\rm iet}^{55} \ge 7$,
		$n_{\text{jet}}^{83} \ge 6 \text{ or } n_{\text{jet}}^{55} \ge 7,$ $n_{\text{Trackless jet}}^{70} \ge 1 \text{ or } n_{\text{Trackless jet}}^{50} \ge 2$
DV preselection	$R_{\rm DV} < 300 \ {\rm mm}, z_{\rm DV} < 300 \ {\rm mm},$ $\min(\vec{R}_{\rm DV} - \vec{R}_{\rm CV}) > 4 \ {\rm mm}, \chi^2/n_{\rm DoF} < 5,$ $n_{\rm Selected\ tracks}^{\rm DV} \ge 2,$ satisfy material map veto	
$n_{ m Tracks}^{ m DV}$	≥ 5 >10 GeV	

