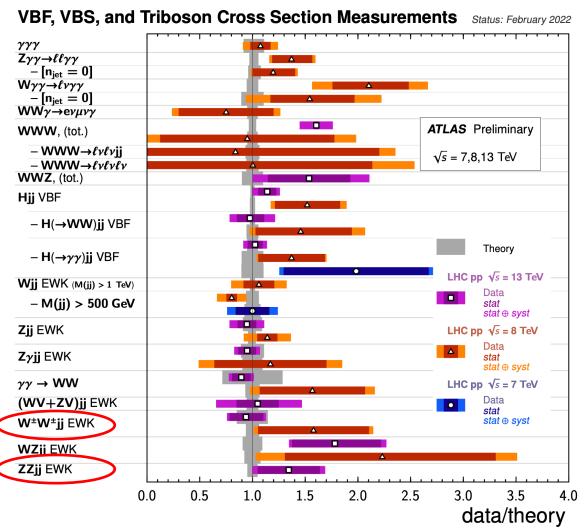
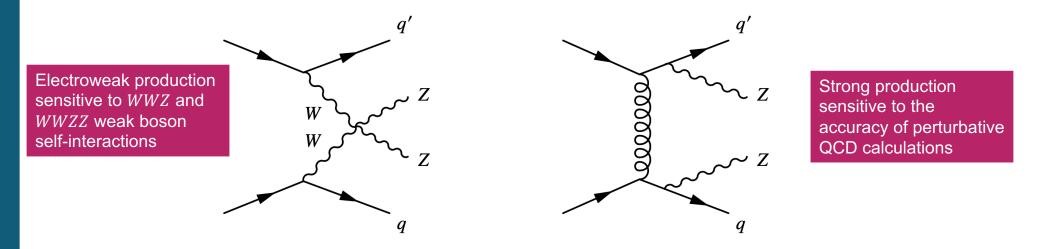
VBS/VBF Measurements (without photons) at ATLAS

Chilufya Mwewa


Brookhaven National Laboratory

On behalf of the ATLAS collaboration 23 May 2023


Overview of Run2 SM Measurements in ATLAS

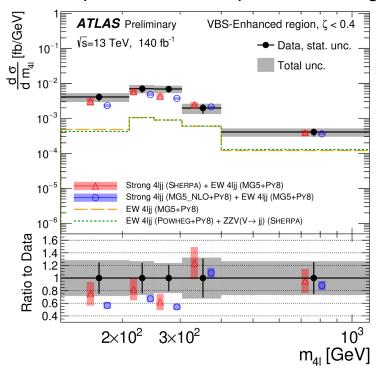
- Wealth of VBS/VBF measurements with Run2 data
- > This talk focuses on the VBS/VBF ZZjj and $W^{\pm}W^{\pm}jj$ measurements using full Run2 data
 - Observed previously by ATLAS at 5.7σ
 (link) and 6.5σ (link) respectively
 - Will now present new results;
 - ZZjj: differential cross sections and EFT interpretation
 - W[±]W[±]jj: Fiducial+differential cross sections, EFT interpretation and doubly charged Higgs searches
 - Both processes are important probes for Vector Boson Scattering (VBS)

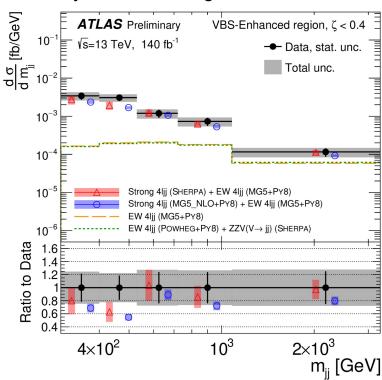
ZZjj: Introduction

Interesting VBS process sensitive to a diverse range of physics Beyond the Standard Model

- Only show differential cross section measurements as a function of observables sensitive to VBS
- Differential cross-sections as a function of observables sensitive to the polarization of the Z boson as well as QCD-sensitive observables are also measured (back-up)

ZZjj: Event selection

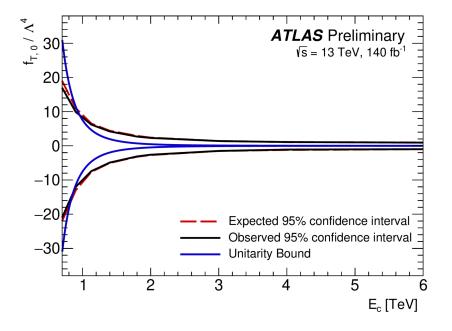

- Two pairs of same-flavor opposite-charge leptons with $m_{ll} > 5$ GeV and $\Delta R(l, l) > 0.05$
- Large lepton quadruplet invariant mass ($m_{4l} > 130 \text{ GeV}$)
- Two forward jets with high transverse momentum ($p_T > 30$ [40] GeV), large dijet invariant mass ($m_{jj} > 300$ GeV and large separation in rapidity ($|\Delta y_{ij} > 2|$)
- Events are further categorized into two SRs;
 - \triangleright A VBS-enhanced SR (ζ < 0.4)
 - ightharpoonup A VBS-suppressed SR ($\zeta > 0.4$)


$$\zeta = \frac{(y_{4l} - 0.5(y_{j_1} + y_{j_2}))}{\Delta y_{jj}}$$

- Signal constitutes both the EW and strong ZZjj processes, hence measurements are inclusive
- ❖ Signal samples
- Nominal Strong ZZjj: SHERPA
- Alternative Strong ZZjj: MG5_NLO+PY8
- Nominal EW ZZjj: MG5+PY8
- Alternative EW ZZjj: POWHEG+PY8

ZZjj: Differential cross section measurement

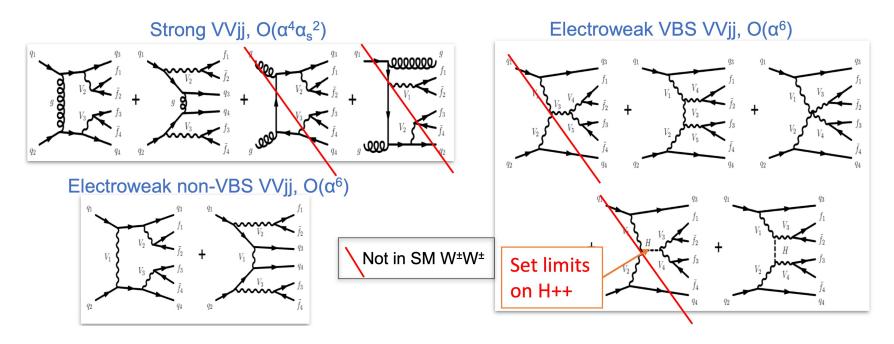
- Particle-level measurements were carried out in the VBS-enhanced and VBS-suppressed fiducial regions
- Correction to particle level was performed using an iterative Bayesian unfolding method


- Good agreement between data and Sherpa prediction (for strong ZZjj signal)
- ightarrow MG5_NLO+PY8 prediction underestimates the data. More prominently seen at low m_{4l} and low m_{jj}
- Powheg+PY8 EW ZZjj prediction agrees well with the MG+PY8 prediction
- ➤ Choice of the EW ZZjj model has very little impact on the inclusive ZZjj production

ZZjj: EFT interpretation Results

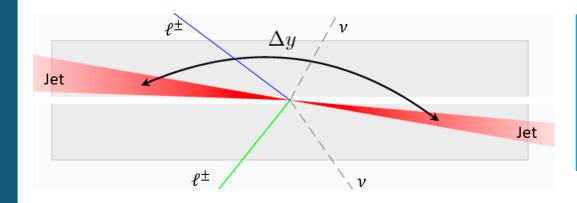
Differential cross-sections as a function of m_{4l} and m_{jj} were used to set limits on anomalous Quartic Gauge Couplings (aQGCs) using dimension 8 (and 6) Effective Field Theory (EFT) operators

Wilson	$ \mathcal{M}_{ ext{d8}} ^2$	95% confidence interval [TeV ⁻⁴]		
coefficient	Included	Expected	Observed	
$f_{\mathrm{T,0}}/\Lambda^4$	yes	[-0.98,0.93]	[-1.0,0.97]	
	no	[-23, 17]	[-19, 19]	
$f_{\mathrm{T,1}}/\Lambda^4$	yes	[-1.2, 1.2]	[-1.3, 1.3]	
	no	[-160, 120]	[-140, 140]	
$f_{\mathrm{T,2}}/\Lambda^4$	yes	[-2.5, 2.4]	[-2.6, 2.5]	
	no	[-74, 56]	[-63, 62]	
$f_{\mathrm{T,5}}/\Lambda^4$	yes	[-2.5, 2.4]	[-2.6, 2.5]	
	no	[-79, 60]	[-68, 67]	
$f_{\mathrm{T,6}}/\Lambda^4$	yes	[-3.9, 3.9]	[-4.1, 4.1]	
	no	[-64, 48]	[-55, 54]	
$f_{\mathrm{T,7}}/\Lambda^4$	yes	[-8.5, 8.1]	[-8.8, 8.4]	
	no	[-260, 200]	[-220, 220]	
$f_{ m T,8}/\Lambda^4$	yes	[-2.1, 2.1]	[-2.2, 2.2]	
	no	$[-4.6, 3.1] \times 10^4$	$[-3.9, 3.8] \times 10^4$	
$f_{\mathrm{T,9}}/\Lambda^4$	yes	[-4.5, 4.5]	[-4.7, 4.7]	
	no	$[-7.5, 5.5] \times 10^4$	$[-6.4, 6.3] \times 10^4$	


• Constraints were also placed on each Wilson coefficient after restricting the interference and pure D8 contributions to have $m_{4l} < E_c$

Wilson coefficients are consistent with zero when the pure D8 contribution is included

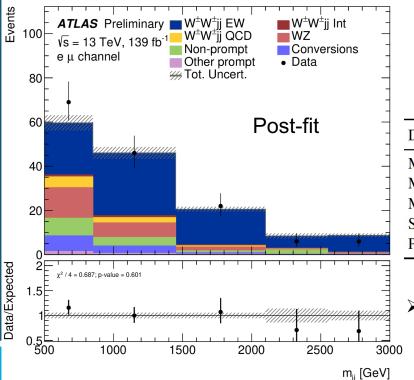
$W^{\pm}W^{\pm}jj$: Introduction


- This process has the largest ElectroWeak (EW) to QCD ratio, hence the QCD-induced background is suppressed.
 - Gluons in the initial state are not allowed

- EW VBS and EW non-VBS diagrams can not be separated in a gauge invariant way
 - > EW measurement includes both
- Total (inclusive) measurement includes EW + QCD + EW/QCD interference

$W^{\pm}W^{\pm}jj$: Event selection

- Two isolated same-sign leptons with high transverse momentum ($p_T > 27 \text{ GeV}$)
- Large missing transverse energy ($E_{T.miss} > 30 \text{ GeV}$)
- Two forward jets with high transverse momentum ($p_T > 65$ [30] GeV), large dijet invariant mass ($m_{jj} > 500$ GeV) and large separation in rapidity ($|\Delta y_{ij} > 2|$)



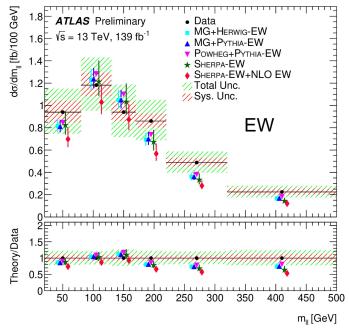
❖ Signal samples

- Nominal $W^{\pm}W^{\pm}jj$ EW, QCD, interference: MG+H7
- Alternative $W^{\pm}W^{\pm}jj$ EW, QCD, interference: MG+PY8

$W^{\pm}W^{\pm}jj$: Fiducial cross section measurement

- The fiducial phase space is defined at particle level (see back-up for fiducial region definition)
- Separate maximum likelihood fits in m_{ij} are performed for EW and total cross section measurements
- SR is split in four regions depending on lepton flavor

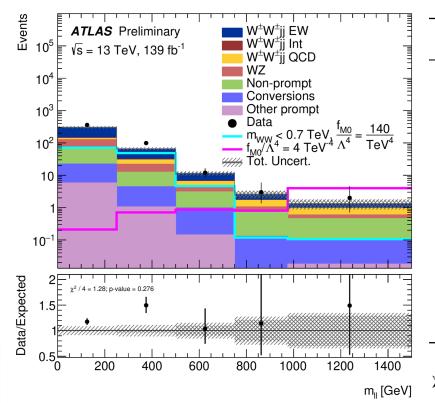

- Good agreement between data and MC
- Good EW signal purity


Description	$\sigma_{ m fid}^{ m EW}$, fb	$\sigma_{ m fid}^{ m EW+Int+QCD}$, fb	
Measured cross section	2.88 ± 0.22 (stat.) ± 0.19 (syst.)	3.35 ± 0.22 (stat.) ± 0.20 (syst.)	
MG_AMC@NLO+Herwig	$2.53 \pm 0.04 \text{ (PDF)} \pm 0.19^{0.22} \text{ (scale)}$	$2.93 \pm 0.05 \text{ (PDF)} \pm 0.34_{0.27} \text{ (scale)}$	
MG_AMC@NLO+Pythia	$2.55 \pm 0.04 \text{ (PDF)} \pm \frac{0.22}{0.19} \text{ (scale)}$	$2.94 \pm 0.05 \text{ (PDF)} \pm \frac{0.33}{0.27} \text{ (scale)}$	
Sherpa	$2.44 \pm 0.03 \text{ (PDF)} \pm 0.40 \text{ (scale)}$	$2.94 \pm 0.05 \text{ (PDF)} \pm \frac{0.33}{0.27} \text{ (scale)}$ $2.80 \pm 0.03 \text{ (PDF)} \pm \frac{0.53}{0.36} \text{ (scale)}$	
POWHEG BOX +PYTHIA	2.67	_	

Slightly higher cross section is observed compared to MC prediction

$W^{\pm}W^{\pm}jj$: Differential cross section measurement

- Measured in the same fiducial phase space mentioned previously (no split in lepton flavor)
- Likelihood-based unfolding (2-D fit) for correction to particle level

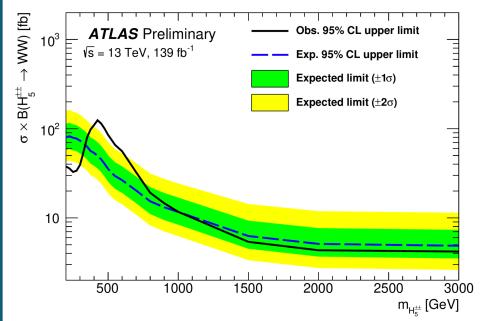

- Five observables measured
- χ² and p-values quantify data/MC compatibility

Variable	EW $W^{\pm}W^{\pm}jj$		Inclusive $W^{\pm}W^{\pm}jj$	
variable	$\chi^2/N_{\rm dof}$	<i>p</i> -value	$\chi^2/N_{\rm dof}$	<i>p</i> -value
$m_{\ell\ell}$	4.4/6	0.623	7.0/6	0.322
$m_{ m T}$	12.9/6	0.045	15.9/6	0.014
m_{ii}	7.2/6	0.300	7.8/6	0.250
$N_{\rm gap\ jets}$	2.3/2	0.316	2.3/2	0.316
$\xi_{ m j_3}$	4.3/5	0.511	5.2/5	0.396

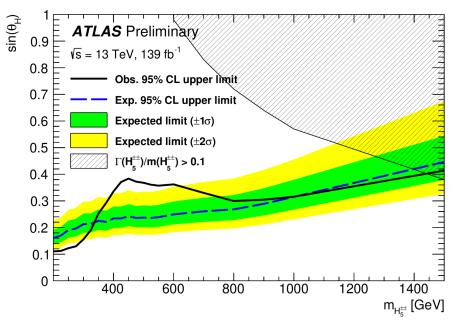
- > Prediction generally underestimates data but good agreement within uncertainties
- \triangleright p-values range between 0.3 and 0.62 indicating reasonable agreement. p-value for m_T is 0.045

$W^{\pm}W^{\pm}jj$: EFT interpretation

- m_{ll} distribution with optimized binning is used to set limits on aQGCs using dimension-8 operators
- Table (right below) shows two sets of 95% CL limits: unclipped and clipped EFT limits at the unitarity bound
- See back-up for clipping scan plots per operator



Coefficient	Туре	No unitarisation cut-off [TeV ⁻⁴]	Lower and upper limit at the respective unitarity bound $[\text{TeV}^{-4}]$
c / A 4	exp.	[-3.9, 3.8]	-64 at 0.9 TeV, 40 at 1.0 TeV
f_{M0}/Λ^4	obs.	[-4.1, 4.1]	-140 at 0.7 TeV, 117 at 0.8 TeV
f_{M1}/Λ^4	exp.	[-6.3, 6.6]	-25.5 at 1.6 TeV, 31 at 1.5 TeV
$JM1/\Lambda$	obs.	[-6.8, 7.0]	-45 at 1.4 TeV, 54 at 1.3 TeV
f_{M7}/Λ^4	exp.	[-9.3, 8.8]	-33 at 1.8 TeV, 29.1 at 1.8 TeV
$JM7/I\Lambda$	obs.	[-9.8, 9.5]	-39 at 1.7 TeV, 42 at 1.7 TeV
f_{S02}/Λ^4	exp.	[-5.5, 5.7]	-94 at 0.8 TeV, 122 at 0.7 TeV
$JS02/\Lambda$	obs.	[-5.9, 5.9]	_
f_{S1}/Λ^4	exp.	[-22.0, 22.5]	_
J_{S1}/Λ	obs.	[-23.5, 23.6]	_
f_{T0}/Λ^4	exp.	[-0.34, 0.34]	-3.2 at 1.2 TeV, 4.9 at 1.1 TeV
$JT0/\Lambda$	obs.	[-0.36, 0.36]	-7.4 at 1.0 TeV, 12.4 at 0.9 TeV
f_{T1}/Λ^4	exp.	[-0.158, 0.174]	-0.32 at 2.6 TeV, 0.44 at 2.4 TeV
JT1/I	obs.	[-0.174, 0.186]	-0.38 at 2.5 TeV, 0.49 at 2.4 TeV
f_{T2}/Λ^4	exp.	[-0.56, 0.70]	-2.60 at 1.7 TeV, 10.3 at 1.2 TeV
JT2/11	obs.	[-0.63, 0.74]	<u> </u>


Constraints are generally consistent with zero

W[±]W[±]jj: H^{±±} Searches

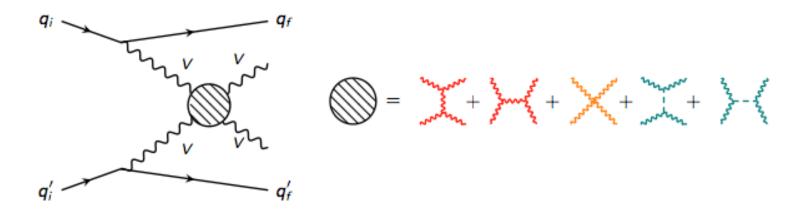
- Model independent upper limits at 95% CL on $\sigma_{VBF} \times \mathcal{B}(H_5^{\pm\pm} \to W^{\pm} W^{\pm})$ are extracted
- Results are also interpreted to search for a doubly charged Higgs boson produced in VBF processes within the Georgi-Machacek model using $m_{H_{\varsigma}^{\pm\pm}}$ and $\sin\theta_H$ as model parameters
- Limit setting: maximum likelihood fit to the distribution for transverse mass (m_T) of the dilepton and $E_{T,miss}$ system

- ightharpoonup Largest excess seen at $m_{H_5^{\pm\pm}}$ = 450 GeV
- \blacktriangleright Local significance: 3.2 σ , global significance: 2.5 σ

 $ightarrow \, \sin heta_H > 0.11$ -0.41 for $200 < m_{H_{\varsigma}^{\pm\pm}} < 1500$ are excluded

Summary

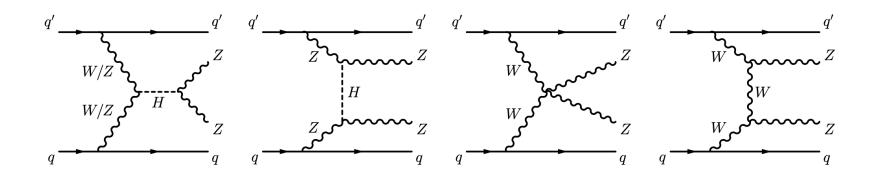
- \blacktriangleright Measurements of VBS/VBF ZZjj and $W^{\pm}W^{\pm}jj$ processes using the full Run2 dataset have been presented
- > ZZjj differential cross-section measurements as a function of observables sensitive to VBS are reported
 - > Data is found to be in good agreement with prediction and the measurement is used to search for anomalous weak boson couplings using dimension 8 EFT operators (coefficients are consistent with zero)
- \triangleright EW and inclusive $W^{\pm}W^{\pm}jj$ fiducial cross sections are measured and found to be consistent with prediction
- $ightharpoonup W^{\pm}W^{\pm}jj$ differential cross sections are also measured as a function of five observables sensitive to VBS
 - \succ The m_{ll} distribution is used to search for anomalous couplings using dimension 8 EFT operators and constraints are competitive with those previously published by CMS
- ightharpoonup Model independent upper limits at 95% CL on $\sigma_{VBF} imes \mathcal{B}(H_5^{\pm\pm} o W^{\pm} W^{\pm})$ are extracted for $m_{H_5^{\pm\pm}}$ between 200 GeV and 3 TeV and a GM model is used to exclude $\sin \theta_H > 0.11$ -0.41 for $200 < m_{H_5^{\pm\pm}} < 1500$ at 95% CL
 - \triangleright A local excess of events at 450 GeV is noted with a global significance of 2.5 σ


link to ZZjj results

Link to W[±] W[±]jj results

Back-up

Vector boson scattering


• Both the ZZjj and $W^{\pm}W^{\pm}$ jj processes are important probes for Vector Boson Scattering (VBS)

- VBS allows us to test Standard Model (SM) predictions to triple and quartic gauge couplings
- VBS requires the presence of the SM Higgs boson for unitarity preservation at high energies
 - In the absence of **Higgs** diagrams, amplitudes of longitudinally polarized vector bosons increase as a function of energy at high \sqrt{s} .
 - ➤ Cancellation of divergences by Higgs diagrams can be altered by new physics effects

Measurements of differential cross-sections for the inclusive and electroweak production of ZZ in association with two jets

ZZjj EWK production

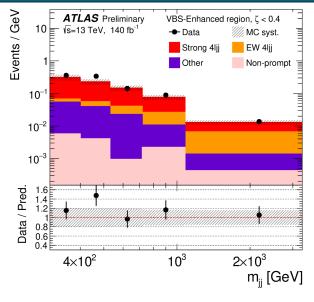
ZZjj: Signal and background estimation

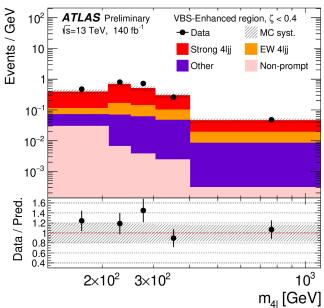
Prompt background

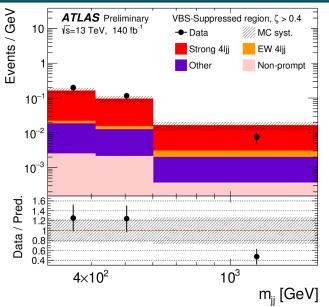
- Processes with 4 prompt leptons
- Main sources: tt̄Z, WWZ, WZZ
- Estimated from Monte Carlo (MC) simulation

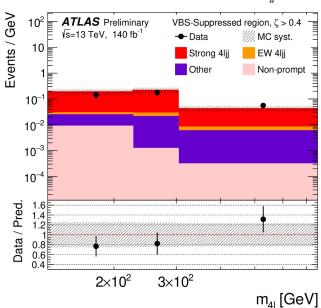
Non-prompt background

- Processes with one or more non-prompt leptons (leptons from jets)
- Main sources: $t\bar{t}$ (b-hadrons from top/antitop decays non-prompt leptons), WZjj (non-prompt lepton from additional jet)
- Estimated using a data-driven method (fake-factor method)

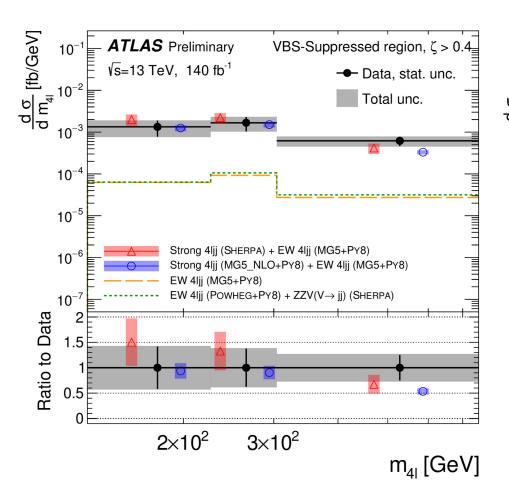

Signal samples

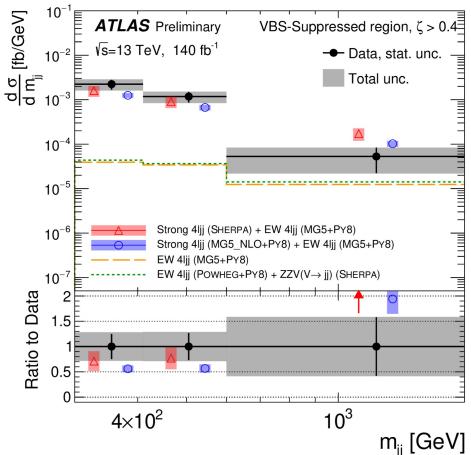

- Nominal Strong ZZjj: SHERPA
- Alternative Strong ZZjj: MG5 NLO+PY8
- Nominal EW ZZjj: MG5+PY8
- Alternative EW ZZjj: POWHEG+PY8

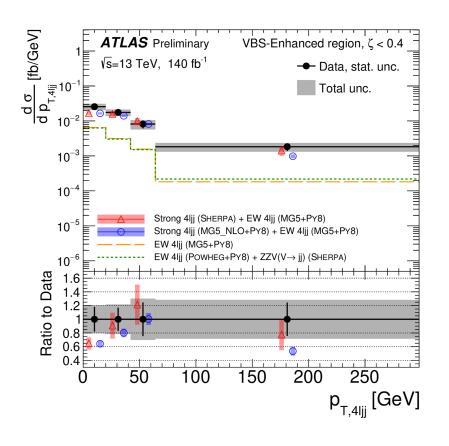

ZZjj systematics

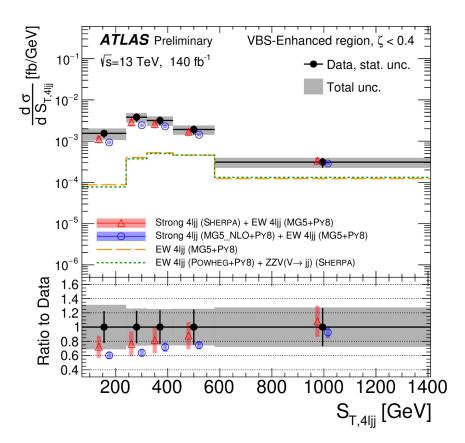

Source	Uncertainty (%)
Luminosity	0.8 - 1.3
Leptons	0.8 - 1.6
Jets	2.7 - 18
Pile-up	0.0 - 2.5
Backgrounds	0.9 - 9.0
Theory modelling	0.6 - 8.8
Unfolding method	0.9 - 12
Total systematic	5 – 22

ZZjj event yields

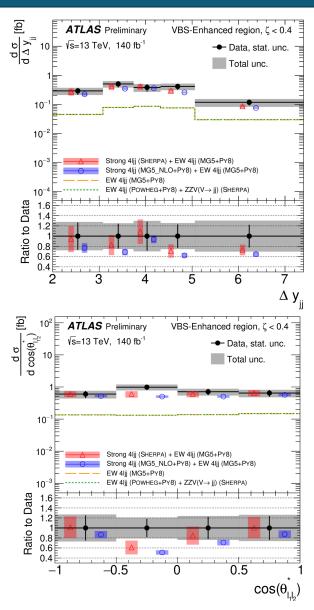


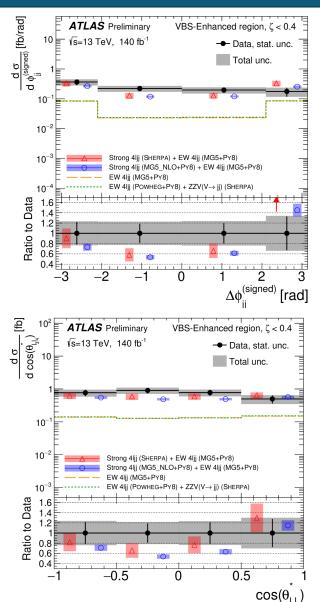



- ➤ VBS-enhanced (left)
- VBS-suppressed (right)


ZZjj differential cross-sections in VBSsuppressed SR

ZZjj results: QCD-sensitive observables





PT4ljj: transverse momentum of the 4lj j system

ST4ljj: scalar sum of transverse momentum of the four leptons and the two jets

ZZjj results: Observables sensitive to Z polarization

ZZjj: EFT interpretation method

• Differential cross-sections as a function of m_{4l} and m_{jj} were used to set limits on anomalous quartic gauge couplings using dimension 8 (and 6) Effective Field Theory (EFT) operators

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + \sum_{i} \frac{f_{\mathrm{T},i}}{\Lambda^4} O_{\mathrm{T},i}$$

Wilson coefficients specify the strength of anomalous couplings

- For each operator, the EFT prediction is given by the sum of the interference, pure D8, nominal EW ZZjj, and the nominal strong ZZjj predictions (Interference and pure D8 EW ZZjj samples are generated using Madgraph)
- A profile likelihood test was then used to set confidence level limits per Wilson coefficient
- Constraints were also placed on each Wilson coefficient after restricting the interference and pure D8 contributions to have $m_{4l} < E_c$, where E_c is a cut-off that prevents unitarity violation at large energy scales

ZZjj results: D6 Wilson coefficients

Wilson	$ \mathcal{M}_{d6} ^2$	95% confidence interval [TeV ⁻²]		
coefficient	Included	Expected	Observed	
c_W/Λ^2	yes	[-1.3, 1.3]	[-1.2, 1.2]	
	no	[-32, 32]	[-37, 28]	
$c_{\widetilde{W}}/\Lambda^2$	yes	[-1.3, 1.3]	[-1.2, 1.2]	
	no	$[-17, 17]^*$	$[0, 30]^*$	
c_{HWB}/Λ^2	yes	[-16, 7]	[-16, 6]	
	no	[-12, 12]	[-15, 10]	
$c_{H\widetilde{W}B}/\Lambda^2$	yes	[-1.3, 1.3]	[-1.2, 1.2]	
,, _	no	[-67, 67]*	$[-25, 130]^*$	
c_{HB}/Λ^2	yes	[-13, 13]	[-12, 12]	
	no	[-38, 38]	[-38, 38]	
$c_{H\widetilde{B}}/\Lambda^2$	yes	[-13, 13]	[-12, 12]	
	no	[-420, 420]*	[-200, 790]*	

Measurement and interpretation of same-sign W boson pair production in association with two jets

Same-sign WW object and event selection

Signal electrons:

- LHTight
- Gradient isolation
- ECIDS (charge ID selector)
- $p_T > 27 \text{ GeV}$
- $|\eta_e|$ < 2.47 excluding 1.37 < $|\eta_e|$ < 1.52

Jets:

- AntiKt4EMPFlowJets
- $p_T > 25 \text{ GeV}$
- $|\eta_{\rm i}|$ < 4.5
- JVT

Signal muons:

- Medium ID
- FixedCutPflowTight isolation
- $p_T > 27 \text{ GeV}$
- $|\eta_{\rm u}|$ < 2.5

b-jets (for b-veto):

- AntiKt4EMPFlowJets
- p_T > 20 GeV
- $|\eta_{\rm i}|$ < 2.5
- DL1r @ 85% efficiency WP

Analysis objects are after passing overlap removal (OR)

Event selection:

- Two same-sign signal leptons; 3rd lepton veto
- m_{II} >= 20 GeV
- $|m_{ee} m_Z| > 15$ GeV, $|\eta_e| < 1.37$ in the ee channel
- E_{T.miss} > 30 GeV
- p_{T,iet,1(2)} > 65 (35) GeV
- m_{ij} > 500 GeV
- $|\Delta y_{ij}| > 2$

3rd lepton veto:

Reject event if there is a 3rd lepton surviving the OR, with:

- p_{Te} > 4.5 GeV
- $p_{T, \mu} > 3 \text{ GeV}$

or if there is a lepton not surviving the OR and is forming a dilepton with one of the signal leptons, with

• $|m_{||} - m_{z}| < 15 \text{ GeV}$

Same-sign WW samples

Process, short description	ME Generator + parton shower	Order	Tune	PDF set in ME
EW, Int, QCD $W^{\pm}W^{\pm}jj$, nominal signal	MadGraph5_aMC@NLO2.6.7 + Herwig7.2	LO	default	NNPDF3.0nlo
EW, Int, QCD $W^{\pm}W^{\pm}jj$, alternative shower	MadGraph5_aMC@NLO2.6.7 + Pythia8.244	LO	A14	NNPDF3.0nlo
EW $W^{\pm}W^{\pm}jj$, NLO QCD approx.	Sherpa 2.2.11	+0,1j@LO	Sherpa	NNPDF3.0nnlo
EW $W^{\pm}W^{\pm}jj$, NLO QCD approx.	Powheg Boxv2 + Pythia8.230	NLO (VBS approx.)	AZNLO	NNPDF3.0nlo
QCD $W^{\pm}W^{\pm}jj$, NLO QCD approx.	Sherpa2.2.2	+0,1j@LO	Sherpa	NNPDF3.0nnlo
VV (leptonic)	Sherpa2.2.2	+0,1j@NLO; +2,3j@LO	Sherpa	NNPDF3.0nnlo
VVV	Sherpa2.2.1 (leptonic) & Sherpa2.2.2 (one $V \rightarrow jj$)	+0,1j@LO	Sherpa	NNPDF3.0nnlo
W/Z + jets	MadGraph5_aMC@NLO2.3.2.p1 + Pythia8.210	+0,1,2,3,4j@LO	A14	NNPDF3.0nlo
$t\bar{t}$ Single t (s - and Wt -channel)	Powheg Boxv2 + Pythia8	NLO	A14	NNPDF3.0 _{NLO}
Single <i>t</i> (<i>t</i> -channel)	Powheg Boxv2 + Pythia8	NLO	A14	NNPDF3.0nlo4f
$t \overline{t} V$	MadGraph5_aMC@NLO2.3.3.p0 + Pythia8.210	NLO	A14	NNPDF3.0nlo
$V\gamma$	Sherpa 2.2.11	MEPS@NLO	A14	NNPDF3.0nnlo

$W^{\pm}W^{\pm}jj$: Signal and Background estimation

* WZ EW and WZ QCD background

- WZ QCD is the most dominant background
- WZ final states are modelled using Monte-Carlo (MC)
 simulations and are dominated by WZ QCD
- The normalization of the WZ QCD process is estimated from data in a dedicated WZ control region

\Leftrightarrow Charge flip and γ conversions background

- Main sources: $W^{\pm}W^{\mp}$ and $V\gamma$ processes
- This is the third-largest background source
- Charge flip is estimated using a data-driven method
- $V\gamma$ processes are estimated from MC simulation

Non-prompt background

- Main sources: Semi-leptonic $t\bar{t}$, W+jets processes
- This is the second-largest
- Estimated using a data-driven method

Other prompt background

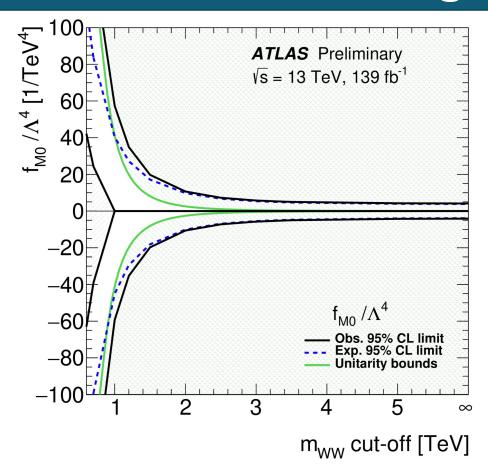
- Main sources: ZZ and VVV processes
- Smallest background contribution
- Estimated from simulation

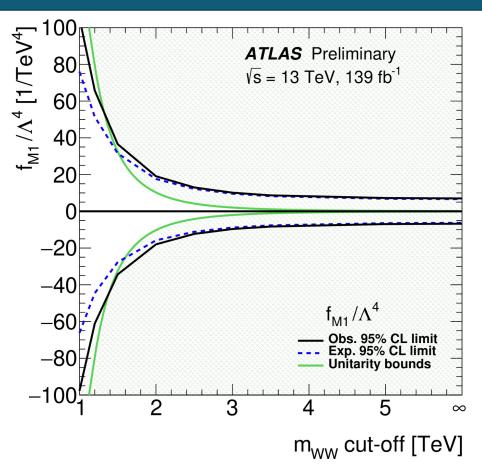
Signal samples

- Nominal $W^{\pm}W^{\pm}ij$ EW, QCD, interference: MG+H7
- Alternative $W^{\pm}W^{\pm}jj$ EW, QCD, interference:

MG+PY8

Same-sign yields and systematics


Source	Impact [%]
Experimental	
Electron calibration	0.4
Muon calibration	0.5
Jet energy scale and resolution	1.8
$E_{\mathrm{T}}^{\mathrm{miss}}$ scale and resolution	0.2
b-tagging inefficiency	0.7
Background, misid. leptons	3.1
Background, charge misrec.	0.8
Pileup modelling	0.2
Modelling	
EW $W^{\pm}W^{\pm}jj$, shower, scale, PDF & α_s	0.8
EW $W^{\pm}W^{\pm}jj$, QCD corrections	3.5
EW $W^{\pm}W^{\pm}jj$, EW corrections	0.8
Int $W^{\pm}W^{\pm}jj$, shower, scale, PDF & α_s	0.1
QCD $W^{\pm}W^{\pm}jj$, shower, scale, PDF & α_s	2.3
QCD $W^{\pm}W^{\pm}jj$, QCD corrections	0.9
Background, WZ scale, PDF & α_s	0.2
Background, WZ reweighting	1.7
Background, other	1.0
Model statistical	1.8
Experimental and modelling	6.7
Luminosity	1.9
Data statistical	7.4
Total	10.0


Process	Pre-fit yield	Post-fit yield
$W^{\pm}W^{\pm}jj$ EW	235 ± 27	278 ± 30
$W^{\pm}W^{\pm}jj$ QCD	24 ± 6	27 ± 7
$W^{\pm}W^{\pm}jj$ Int	7.6 ± 0.6	8.1 ± 0.7
$W^{\pm}Zjj$	98 ± 11	71 ± 8
Non-prompt	56 ± 11	55 ± 11
$V\gamma$	11 ± 4	13 ± 5
Charge mis-ID	10.1 ± 3.4	11.0 ± 3.5
Other prompt	7.1 ± 2.4	6.7 ± 1.9
Total Expected	448 ± 34	470 ± 40
Data	4	75

Same-sign fiducial region definition

- Two same-sign leptons (e or μ), dressed
- e or μ from tau lepton decays are excluded
- $p_{T,lep1,2} > 27 \text{ GeV}, |\eta_{lep1,2}| < 2.5$
- $m_{II} >= 20 \text{ GeV}$
- $|m_{ee} m_z| > 15 \text{ GeV}$
- E_{T.miss} > 30 GeV
- Two jets from AntiKt4TruthJets
- Overlap removal between electrons and jets
- $p_{T,jet,1(2)} > 65$ (35) GeV, $|\eta_j| < 4.5$
- m_{ii} > 500 GeV
- $|\Delta y_{ii}| > 2$

Same-sign EFT limits

