

11th Edition of the Large Hadron Collider Physics Conference

Prompt signature searches in CMS

Xuli (Sebastian) Yan

On behalf of the CMS Collaboration

Belgrade, 22 - 26 May 2023

DARK SIDE of the universe

The Standard Model is so far the most successful theory we have that describes the universe

• Dark matter and dark energy are two loud questions waiting for a solution

Can we find dark matter using the particle collider?

The Extended Rotation Curve and the Dark Matter Halo of M33. arXiv:astro-ph/9909252

Hubble Space Telescope image of Abell 370 galaxy cluster collisions. Credit: NASA, ESA

Using the pp collision @ LHC as a probe

- ★ We need to have some assumptions first
 - If we want to detector dark matter using the LHC, then there must be at least some weak coupling between the SM and the dark sector

• Manifest themselves as mainly two types of signatures at the CMS experiment

Simplified models

With the minimal number of free parameters

Extended Higgs sector

Generating masses of DM particles

Other more complete models

General BSM

DM oriented

dark photon

dark Higgs

SUSY, extra dimensions...

semi-visible jets, dark showers ...

DM mediator resonances decay into SM particles

Low mass resonances searches

•••

Recent CMS results

I. Search for dark matter particles produced in W^+W^- events with transverse momentum imbalance (darkHiggs + MET)

CMS PAS EX0-21-012

II. Search for prompt production of a GeV scale resonance decaying to a pair of muons

III. Other prompt searches

darkHiggs (WW) + MET

m_s [GeV]

- → Focus on the darkHiggs model [arXiv:1701.08780]
 - χ mass through dark Higgs (s) Yukawa coupling
 - two mediators: Z', s
 - free parameters: m_s , m_χ , $m_{Z'}$, g_χ , g_q

- ightharpoonup First effort by CMS on $s \rightarrow WW$
 - WW becomes the dominating decay mode when $m_s > 160 \text{ GeV} (WW \text{ on shell})$
 - Two final states are considered:

$$s \rightarrow WW \rightarrow lvlv$$
 (di-leptonic)

 $s \rightarrow WW \rightarrow lvjj$ (semi-leptonic, resolved)

darkHiggs (WW) + MET (semi-leptonic)

- Triggering on muons (> 24 GeV) and electrons (> 25 GeV)
- Full Run-2 data (137 fb⁻¹)

- Selection optimized for semi-leptonic *WW*
- Removing W-jets with b-veto to reduce top background
- High efficiency with good background reduction. Further optimized by the BDT

	Process	Estimation	CR/Validation
~17% SR	Тор	MC + normalization freely floating, constrained by CR	Invert b-veto
~74% SR	W+jets	MC + normalization freely floating, constrained by CR	m _{jj} < 65 m _{jj} > 105 GeV
~4% SR	Non-prompt	Fully data-driven estimation	Same lepton charge
			m _T (I + MET) < 30 && MET < 30 GeV

SR selection

nLeptons ≥ 1		
nJet Clean ≥ 2		
$(p_T > 30 \text{ GeV, tight ID, loosePU if } p_T < 50)$		
p _T ^{l1} > trigger threshold		
Veto 2nd loose leptons if $p_T^{l2} > 10 \text{ GeV}$		
65 < m ^{jj} < 105 GeV		

b-veto DeepCSV LooseWP (excluding W candidate jets)

W candidate jets $|\eta|$ < 2.4

Δφ(ljj, PuppiMET) > 2
$\Delta \phi(jj,l) < 1.8$, $\Delta R(jj,l) < 3$
m _T (I + PuppiMET) > 80 GeV
PuppiMET > 60 GeV
р _т ^{іјі} > 60 GeV

darkHiggs (WW) + MET (semi-leptonic)

BDT training

• Using 2017 sample (25%)

• Bkg: W+jets, top

• Signal: $m_{Z'} \ge 800 \text{ GeV}$

• 13 variables selected based on ROCs

• Kolmogorov-Smirnov 2 sample test to avoid overtraining

99% bkg reduction (last 5 bins)

40-60% signal (last 5 bins)

Variable	Definition
$p_{\mathrm{T}}^{\mathrm{jj}}$	p_{T} of the vectorial sum of the W candidate jets
$p_{\mathrm{T}}^{J} \ p_{\mathrm{T}}^{\ell \mathrm{jj}} \ p_{\mathrm{T}}^{\mathrm{miss}}$	$p_{\rm T}$ of the vectorial sum of the visible particles
$p_{ m T}^{ m miss}$	Size of the missing transverse momentum vector
$\Delta\eta_{\ell,jj}$ and $\Delta\phi_{\ell,jj}$	$\Delta\eta$ and $\Delta\phi$ between the lepton and the di-jet system
$\Delta \eta_{\mathrm{i,i}}^{'''}$ and $\Delta \phi_{\mathrm{i,i}}^{''''}$	$\Delta\eta$ and $\Delta\phi$ between the W candidate jets
$\Delta\eta_{\ell,p_{\scriptscriptstyle m T}^{ m miss}}$ and $\Delta\phi_{\ell,p_{\scriptscriptstyle m T}^{ m miss}}$	$\Delta\eta$ and $\Delta\phi$ between the lepton and $ec{p}_{ m T}^{ m miss}$
$\Delta\phi_{\ell jj,p_{\mathrm{T}}^{\mathrm{miss}}}$	$\Delta\phi$ between the vectorial sum of the visible particles and $ec{p}_{\mathrm{T}}^{\mathrm{miss}}$
$min(p_{\mathrm{T}}^{\ell},p_{\mathrm{T}}^{j_2})/p_{\mathrm{T}}^{\mathrm{miss}}$	Minimum of the lepton p_T and the trailing jet p_T , divided by p_T^{miss}
$max(p_{\mathrm{T}}^{\ell},p_{\mathrm{T}}^{\mathrm{j}_{2}})/p_{\mathrm{T}}^{\mathrm{miss}}$	Maximum of the lepton p_T and the leading jet p_T , divided by p_T^{miss}
$max(p_{\mathrm{T}}^{\ell},p_{\mathrm{T}}^{\mathrm{j}_{1}})/m_{\ell \mathrm{j} \mathrm{j} p_{\mathrm{T}}^{\mathrm{miss}}}$	Maximum of the lepton p_T and the leading jet p_T , divided by
- <i>m</i> 1	the invariant mass of the vectorial sum of the visible particles and the $p_{\rm T}^{\rm miss}$ where the missing energy is considered to be massless

♦ Uncertainties

- MC statistics in significant bins
- Top p_T reweighting and W+jet NLO scale factors
- Experimental: lumi; trigger eff; lepton RECO, energy scale; b-tagging;
 MET unclustered...
- Theory: PDF; QCD scale...

darkHiggs (WW) + MET (di-leptonic)

- ightharpoonup Signal signatures: 2 different flavor leptons ($e\mu$), MET from neutrinos + χ
 - Triggering on muons (>8 GeV) and electrons (>12 GeV) with di-lepton triggers
 - Full Run-2 data (137 fb⁻¹)

Selection	
nLeptons ≥ 2, Different flavour, opposite signed	
p l _{1T} / p l _{2T} > 25 / 20 GeV	
Vetoed additional loose leptons with pℓ _{3T} > 10 GeV	/
p₁ ℓ > 30 GeV	
m ∉ > 12 GeV	
p _T ^{miss} > 20 GeV	/
min(proj. p _T ^{miss} , proj. Trk p _T ^{miss}) > 20 GeV	/
m _T (ℓ + p _T ^{miss}) > 50 GeV	/
ΔR(<i>U</i>) < 2.5	/
bVeto DeepCSV LooseWP (pTj > 20 GeV, Tight ID, loose pu ld if pTj < 50 GeV)	

Signal region selection

Reduce background from fakes

Suppress contributions from Drell-Yan

Suppress WW production

Suppress $t\bar{t}$ production

Process	Estimation	CR/Validation
Тор	MC + normalization freely floating, constrained by CR	Invert b-veto
	Fully data-driven estimation	Same lepton charge
Non-prompt		m _T (I + MET) < 30 && MET < 30 GeV
WW	MC + normalization freely floating, constrained by CR	ΔR(I,I) > 2.5
Drell-Yan	MC + normalization freely floating, constrained by CR	m _T (II + MET) < 50 GeV

darkHiggs (WW) + MET (di-leptonic)

137 fb⁻¹ (13 TeV)

♦ Signal extraction

- 3-D maximum likelihood fit to ΔR_{ll} , m_{ll} , $m_T^{l_{min},p_T^{miss}}$ (more sensitive than variables based on lepton kinematics)
- 3 SRs on ΔR_{ll} based on how boosted the darkHiggs is: [0,1.0],[1.0,1.5] and [1.5.2.5]

♦ Uncertainties

- MC statistics in significant bins
- WW MC NNLO+NNLL scale factors,
- Top p_T reweighting
- Experimental: lumi; trigger eff; lepton RECO, energy scale; btagging; MET unclustered...
- Theory: PDF; QCD scale...

CMS Preliminary

bin number (m, - m_T

darkHiggs (WW) + MET (combination)

2500

2000

m_{z'} [GeV]

CMS PAS EX0-21-012

Target JHEP

- ✓ Extended coverage of the dark matter mass -> [100, 300] GeV
- ✓ No significant deviation is seen. Most stringent limit for m_{χ} =200 GeV compared to ATLAS previous results^[1]
 - m_s < 350 GeV excluded @ $m_{Z'}$ = 700 GeV
 - $m_{Z'} < 2200 \text{ GeV}$ excluded @ $m_s = 160 \text{ GeV}$

2500

500

1000

1500

2000

m_{z'} [GeV]

[1] arXiv:2211.07175

1000

1500

500

Recent CMS results

I. Search for dark matter particles produced in W^+W^- events with transverse momentum imbalance (darkHiggs + MET)

II. Search for prompt production of a GeV scale resonance decaying to a pair of muons

CMS PAS EXO-21-005

III. Other prompt searches

→ Mainly targeting light mediators (short-lived)

- Kinetic mixing between SM and the dark sector, controlled by mixing parameter ϵ (A')
- Portals allow SM particles to couple with the dark matter
- If the mixing is sizeable, these mediators would be short-lived

- ★ A challenging search with traditional trigger strategies
- Unknown dark photon mass and coupling
- Low-pt objects, very high trigger rate with traditional triggers
- Huge data set to process, resource consuming

→ CMS data scouting

L1 trigger

Total Bandwidth

Event Rate * Size

ine RECO

40 MHz

Traditional muon triggers $p_T(\mu) > \sim 15 \text{ GeV}$

Sacrifice event content to lower trigger thresholds (more physics possibilities)

Scouting muon triggers $p_T(\mu) > 3 \text{ GeV}$ $(m_{\mu\mu} \sim 200 \text{ MeV})$

- → Targeted signature: 2 muons with small primary vertex displacement
 - Triggering on double muons (>3 GeV) with the scouting method
 - $2017 + 2018 \text{ data } (97 \text{ fb}^{-1})$
 - Benchmark model: Hidden Abelian Higgs Model, 2HDM+s arXiv:0803.1243 JHEP03(2018)178

Baseline selections

> 1 opposite sign muon pair

$$p_T > 4 \text{ GeV}, |\eta| < 1.9$$

|PV - BeamSpot|(L) < 0.2 cm

Pass two custom muon BDT IDs $(m_{uu} < 4 \text{ GeV: J/}\psi \quad m_{uu} > 4 \text{ GeV: Upsilon})$

Add. Selection

Dark photon "inclusive"

Pseudoscalar "boosted"

mass	$m_{\mu\mu} < 4~{ m GeV}$	$m_{\mu\mu} > 4~{ m GeV}$	$m_{\mu\mu} < 4~{ m GeV}$	$m_{\mu\mu} > 4~{ m GeV}$
p_T	> 4 GeV		> 5 GeV	
Vertex	sig <i>L</i> < 3.5	<i>L</i> < 0.015cm	sig <i>L</i>	< 3.5
$p_{T\mu\mu}$	-	-	> 35 GeV	> 20 GeV

- → Bump-hunt on the di-muon mass spectra
 - Signal shape: DCB+Gaus
 - Background estimation:

empirical parametric functions (corrected for the $D_0 \rightarrow KK/K\pi$ mis-identification) with discrete

Effect	$m_{\mu\mu} < 2.6 \text{ GeV}$	$m_{\mu\mu} > 4.2 \text{ GeV}$
Integrated luminosity	2.3-	-2.5%
Mass resolution	2	0%
Trigger efficiency	1-	20%
Muon ID efficiency	4–9%	12-20%
Vertex selection	_	3%
Efficiency application	8%	4%
D meson normalization TFs	20–25%	_

profiling

- ightharpoonup Limits are set for $m_{\mu\mu}$ in [1.1, 2.6] and [4.2, 7.9] GeV
 - Largest excess @ 2.41 GeV in the boosted category, low mass selection

Recent CMS results

I. Search for dark matter particles produced in W^+W^- events with transverse momentum imbalance (darkHiggs + MET)

II. Search for prompt production of a GeV scale resonance decaying to a pair of muons

III. Other prompt searches (for more complete models)

Other prompt searches

138 fb⁻¹ (13 TeV)

Search for resolved high-mass trijet resonances

CMS-PAS-EXO-22-008

- ★ First search for the single production of resolved trijet resonances!
 - Targeted both the 3-body decay $(X \to jjj)$ and cascade decay $(X \to Yj \to jjj)$ in [1.75, 9.0] TeV. Extended a previous CMS search^[1] for the cascade decay
 - Bump-hunt on m_{jjj} with energy radiated by final state gluons recovered. Background estimated from parametric function fits to the data

• No significant excess. Limits could be easily reinterpreted with other models predicting such new heavy resonances

More in Manos's talk

m_{q*} [TeV]

Other prompt searches

New!!

high mass dimuon resonance associated with b quark jets

- \rightarrow Main target: new Z' (for $b \rightarrow sll$ anomalies)
 - Events categorized based on the number of b-jet (= 1 or \geq 2).
 - $t\bar{t}$ killer: background rejected with $\min(m_{\mu b}) > 175 \text{ GeV}$
 - Bump-hunt, SM background estimated from parametric function fits to the data
 - Z' between 0.35 2.5 TeV are considered. Limits could be interpreted by any neutral resonance model

138 fb⁻¹ (13 TeV)

More in Manos's talk

 $g \sim 0000000$

9 000000

9 0000000

Conclusions

CMS

- ✓ Continuous efforts by the CMS on the search for dark matter, as well as other generic BSM scenarios
- ✓ Improved data taking / analysis techniques provided more stringent results
- ✓ Unfortunately, the dark particles are still playing the "hide and seek" with us

- ✓ Second year in Run-3, moving to look at new Run-3 data
- ✓ Doubled statistics allows further essential scrutinizes of excesses seen in Run-2
- ✓ New possibilities
- New advanced taggers based on ML
- Data parking, can we gain something from it for low-pt searches?
- • •

Let's go

DARKER