VBS/VBF measurements (without photons) at CMS

Giacomo Boldrini

${ }^{1}$ University and INFN of Milano - Bicocca
${ }^{2}$ On the behalf of the CMS collaboration

Vector Boson Scattering

Vector boson scattering (VBS) happens at the LHC when the two incoming partons radiate electroweak vector bosons that interact with each other

- Without photons, VBS presents a 6-fermions final state: 2 jets coming from the initial state partons, 4 coming from the scattered bosons
- Peculiar kinematical properties: 2 jets in the forward region with high $\Delta \eta_{j j}$ and $m_{j j}$, no additional hadronic activity in the rapidity gap

At LO VBS contributions come from purely-EW processes α^{6}, QCD-induced $\alpha_{S}^{2} \alpha^{4}$ and the interference $\alpha_{S} \alpha^{5}$

Vector Boson Scattering

VBS is a fundamental probe to understand the electroweak symmetry breaking mechanism (EWSB)

- The presence of the Higgs field regularizes the VBS cross-section by canceling exactly the E^{2} behaviour of bosonic-only processes
- A delicate equilibrium: if the 2012 observed scalar does not behave precisely as the SM Higgs boson (δ), deviations can be detected in the energy-growth of VBS observables \rightarrow New physics
- This behaviour is independent of the underlying BSM physics $\rightarrow A$ model-agnostic physics probe

Upper: A. Denner et. al., lower: K. Cheung et. al.

Vector Boson Scattering at CMS

CMS cross section summary
G. Boldrini, 23/05/2023, LHCP 2023 - Belgrade

VBS Landscape at CMS

Thanks to the integrated Run II Luminosity, VBS measurements are quickly populating the experimental landscape of Standard Model (SM) measurements.

This talk

$\sqrt{5}$	\mathcal{L}	Process	Article	Comments
8 TeV	$\begin{aligned} & 19.7 \mathrm{fb}^{-1} \\ & 19.7 \mathrm{fb}^{-1} \\ & 19.4 \mathrm{fb}^{-1} \\ & 19.7 \mathrm{fb}^{-1} \\ & 19.7 \mathrm{fb}^{-1} \\ & 19.4 \mathrm{fb}^{-1} \\ & \hline \end{aligned}$		Eur.Phys.J.C75(2015)66 JHEP11(2016)147 PhysRevLett.114.051801 PhysLettB770(2017)380-402 JHEPO6(2017)106 PhysRevLett.114.051801	2016: >5 σ 2016: 4 σ, Run II: Ongoing CMS finds 2σ CMS finds 3σ CMS finds 2.7σ CMS finds 2σ
13 TeV	$\begin{aligned} & 35.9 \mathrm{fb}^{-1} \\ & 35.9 \mathrm{fb}^{-1} \end{aligned}$	$\begin{gathered} \mathrm{EW} \mathrm{Zjj}\left(l^{+} l^{-} \mathrm{jj}\right) \\ \mathrm{EW} W^{ \pm} \mathrm{jj}\left(l^{ \pm} \nu j \mathrm{jj}\right) \end{gathered}$	Eur.Phys.J.C78(2018)589 Eur.Phys.J.C80(2020)43	2016: »5 σ, Run II: Ongoing 2016: »5 σ, Run II: Ongoing
	$\begin{aligned} & 137 \mathrm{fb}^{-1} \\ & 137 \mathrm{fb}^{-1} \\ & 137 \mathrm{fb}^{-1} \end{aligned}$	$\begin{gathered} \text { EW } W^{ \pm} W^{ \pm} \mathrm{jj}(2 l 2 \nu j j) \\ \text { EW } W^{ \pm} \mathrm{Zjj}(3 l \nu j j) \\ \text { EW } Z Z j j(4 \mathrm{ljj}) \end{gathered}$	PhysLettB809(2020) PhysLettB809(2020)135710 PhysLettB812(2021)135992	2016: 5.5 σ, Run II: » 5σ Run II: 6.8σ 2016: 2.7σ, Run II: $\mathbf{4} \sigma$
	$\begin{gathered} 137 \mathrm{fb}^{-1} \\ 35.9 \mathrm{fb}^{-1} \end{gathered}$	$\begin{gathered} \text { EW } Z_{\gamma j j(l l \gamma j j)} \\ \text { EW } W^{ \pm}{ }_{\gamma j j(l \nu \gamma j j)} \end{gathered}$	PhysRevD.104.072001 PhysLettB811(2020)135988	2016: 4.7 σ, Run II: »5 σ 2016: 5.3 σ, Run II: Ongoing
	$\begin{aligned} & 138 \mathrm{fb}^{-1} \\ & 138 \mathrm{fb}^{-1} \end{aligned}$	$\begin{gathered} E W W^{ \pm} V_{j j}(l \nu j j j) \\ E W W^{ \pm} W^{\mp} j j(2 l 2 \nu j j) \end{gathered}$	PhysLettB834(2022)137438 PhysLettB841(2023)137495	Run II: 4.4σ Run II: 5.6σ
	$\begin{aligned} & 138 \mathrm{fb}^{-1} \\ & 138 \mathrm{fb}^{-1} \\ & 138 \mathrm{fb}^{-1} \\ & 138 \mathrm{fb}^{-1} \\ & 138 \mathrm{fb}^{-1} \end{aligned}$	EW VVjj(4j/2j2 $2 j j)$ EW VVpp(4jpp) $E W W^{ \pm} W^{ \pm} j j(2 \tau 2 \nu j j)$ EW ZVjj(2lijjj) EW ZZjj(2l2 $2 j j)$		Run II: Ongoing Run II: Ongoing Run II: Ongoing Run II: Ongoing Run II: Ongoing

G. Boldrini, 23/05/2023, LHCP 2023 - Belgrade

Leptonic VBS ZZ $\rightarrow 4 l$

Final state with 2 VBS-jets and two pairs of oppositely charged isolated leptons with same

PhysLettB812(2021)135992

 flavour compatible with decay products of a Z boson.
Regions

- EW significance, total fiducial cross sections and search for aQGCs in ZZ-inclusive region $m_{j j}>100 \mathrm{GeV}$
- fiducial cross section measurements done in two VBS-enriched regions with $\Delta \eta>2.4$ and $m_{j j}>400 \mathrm{GeV}$ or $m_{j j}>1 \mathrm{TeV}$
- One background control region with events from inclusive region not entering the loose VBS-enriched region

Region	EW-VBS	QCD-ZZ	Irr.	Z+jets
Inclusive	6.5%	82.3%	8.7%	2.5%
Loose	21.0%	71.7%	5.3%	2.1%
Tight	48.4%	46.2%	3.7%	1.7%

Backgrounds

- Dominant QCD-induced ZZ production $(q \bar{q} \rightarrow Z Z, g g \rightarrow Z Z)$
- t̄̄Z+jets, VVZ+jets irreducible
- Fake and non-prompt leptons mainly from $Z+j e t s$ but also $t \bar{t}+j e t s, W Z+j e t s$

G. Boldrini, 23/05/2023, LHCP 2023 - Belgrade

Leptonic VBS ZZ $\rightarrow 41$

Signal extracted with Matrix Element Discriminant $\left(K_{D}\right)$. Check that MVAs bring no significant gain

- Evidence for EW VBS production 4.0σ (3.5 expected)
- Cross section (EW and EW+QCD) measured in three fiducial volumes with VBS-EW simulation at LO and NLO Good agreement with SM

Region	σ (EW) fb
Inclusive	$0.33_{-0.10}^{+0.11}$ (stat) $)_{-0.03}^{+0.04}$ (syst)
Loose	$0.180_{-0.060}^{+0.070}$ (stat) ${ }_{-0.0212}^{+0.021}$ (syst)
Tight	$0.09_{-0.03}^{+0.04}$ (stat) ± 0.02 (syst)

Limits on Wilson coefficients (W.c.) of transverse (T) dimension-8 operators extracted from $m_{4 l}$ distribution. The VBS-ZZ is extremely sensitive to charged (T_{0}, T_{1}, T_{2}) and neutral operators (T_{8}, T_{9})

- Unitarization of the scattering amplitude $\left|\mathcal{A}_{S M}+\frac{f_{i}}{\Lambda^{4}} \mathcal{A}_{\mathcal{O}_{8}}\right|$ taken into account
- No significant deviations from SM observed

Coupling	Exp. lower	Exp. upper	Obs. lower	Obs. upper	Unitarity bound
$f_{\mathrm{T} 0} / \Lambda^{4}$	-0.37	0.35	$-0.24(-0.26)$	$0.22(0.24)$	2.4
$f_{\mathrm{T} 1} / \Lambda^{4}$	-0.49	0.49	$-0.31(-0.34)$	$0.31(0.34)$	2.6
$f_{\mathrm{T} 2} / \Lambda^{4}$	-0.98	0.95	$-0.63(-0.69)$	$0.59(0.65)$	2.5
$f_{\mathrm{T} 8} / \Lambda^{4}$	-0.68	0.68	$-0.43(-0.47)$	$0.43(0.48)$	1.8
$f_{\mathrm{T} 9} / \Lambda^{4}$	-1.5	1.5	$-0.92(-1.02)$	$0.92(1.02)$	1.8

G. Boldrini, 23/05/2023, LHCP 2023 - Belgrade

Leptonic VBS $W^{ \pm} W^{ \pm} \rightarrow 2^{ \pm} 2 \nu$

Backgrounds

- Dominant non-prompt, estimated from data
- Wrong-sign from mischarge identification mainly from $Z+j e t s$
- EW VBS $W^{ \pm} Z$ where one Z-lepton is lost
- QCD-induced $W^{ \pm} W^{ \pm}+2 j e t s$ and $W^{ \pm} Z+$ 2jets
- QCD and EW induced $\mathbf{Z Z}$ + $\mathbf{2 j e t s}$

The Zeppenfeld variable Z_{l} used to reduce QCD-induced background $Z_{X}=\left|\eta_{X}-\bar{\eta}_{j}\right| /\left|\Delta \eta_{j j}\right|$.

G. Boldrini, 23/05/2023, LHCP 2023 - Belgrade

Leptonic VBS $W^{ \pm} W^{ \pm} \rightarrow 2 l^{ \pm} 2 \nu$

Maximum Likelihood (ML) fit to 5 regions simultaneously. Including NLO EW+QCD corrections $(\mathcal{O}(10 \%))$ at order $\alpha^{7}, \alpha_{s} \alpha^{6}$ to VBS $W^{ \pm} W^{ \pm}$and WZ

Observables

- $W^{ \pm} W^{ \pm}$signal extracted with 2D variable: \mathbf{m}_{ll} and \mathbf{m}_{jj}
- Boosted Decision Tree trained for EW VBS WZ
- \mathbf{m}_{ij} to measure WZ-QCD and ZZ normalization from data

The VBS EW production of $\mathbf{W}^{ \pm} \mathbf{W}^{ \pm}$is observed with a significance » 5σ

Leptonic VBS $W^{ \pm} Z \rightarrow 3 l \nu$

The VBS production of WZ is treated as a background to the $W^{ \pm} W^{ \pm}$analysis but is an interesting process by itself. Measured together with $W^{ \pm} W^{ \pm}$.

Backgrounds

- Dominant QCD induced

- Non-prompt estimated from data
- Wrong-sign from mischarge identification mainly from Z+jets
- QCD and EW induced ZZ + 2jets In order to reduce the overwhelming QCD background a BDT is employed to extract the signal trained with reported variables

Variable	Definition
$m_{\text {ij }}$	Mass of the leading and trailing jets system
$\Delta \eta_{\text {ji }}$	Absolute difference in rapidity of the leading and trailing je
$\Delta \phi_{i 1}$	Difference in azimuth angles of the leading and trailing jets
$p_{5}^{\text {i }}$	p_{T} of the leading jet
$p_{\text {T }}^{12}$	p_{T} of the trailing jet
η^{11}	Pseudorapidity of the leading jet
$\left\|\eta^{\mathrm{W}}-\eta^{\mathrm{z}}\right\|$	Absolute difference between the rapidities of the Z boson and the lepton from the decay of the W boson
$\mathrm{z}_{\ell_{1}}^{*}(i=1,2,3)$	Zeppenfeld variable of the three selected leptons: $z_{\ell}^{*}=\left\|\eta_{\ell_{i}}-\left(\eta_{j 1}+\eta_{j 2}\right) / 2 .\right\| / \Delta \eta_{\bar{j}}$
$\begin{aligned} & \mathrm{z}_{3,}^{*} \\ & \Delta R_{\mathrm{i} 1, \mathrm{z}} \end{aligned}$	Zeppenfeld variable of the triple-lepton system The ΔR between the leading jet and the Z boson
$\left\|p_{\mathrm{T}}^{\text {tot }}\right\|$ / $\sum_{i} p_{\mathrm{T}}^{\text {i }}$	Transverse component of the vector sum of the bosons and tagging jets momenta, normalised to their scalar p_{T} sum

The VBS EW production of $W^{ \pm} Z$ is observed with a significance of
6.8 σ (5.3 expected)

$W^{ \pm} W^{ \pm}$and $W^{ \pm} Z$ fiducial cross-sections and EFT

Inclusive and differential cross-sections measurements are reported in fiducial phase spaces for $W^{ \pm} W^{ \pm}$and $W^{ \pm} Z$ with selections targeting VBS-signature. Good agreement with SM

Process	$\sigma \mathcal{B}(\mathrm{fb})$	Theory prediction (fb)	Theory prediction with NLO corrections (fb)
EW W ${ }^{ \pm} \mathrm{W}^{ \pm}$	$\begin{gathered} 3.98 \pm 0.45 \\ (0.37((\text { stat })) \pm 0.25(\text { syst }))) \end{gathered}$	3.93 ± 0.57	3.31 ± 0.47
EW + QCD W ${ }^{ \pm} \mathrm{W}^{ \pm}$	$\begin{gathered} 4.42 \pm 0.47 \\ (0.39((\text { stat })) \pm 0.25(\text { (syst) })) \end{gathered}$	4.34 ± 0.69	3.72 ± 0.59
EW WZ	$\begin{gathered} 1.81 \pm 0.41 \\ (0.39((\text { stat })) \pm 0.14(\text { (syst) })) \end{gathered}$	1.41 ± 0.21	1.24 ± 0.18
EW+QCD WZ	$\begin{aligned} 4.97 & \pm 0.46 \\ (0.40((\text { stat })) & \pm 0.23(\text { syst }))) \end{aligned}$	4.54 ± 0.90	4.36 ± 0.88
QCD WZ	$\begin{gathered} 3.15 \pm 0.4 \\ (0.45((\text { stat })) \pm 0.18(\text { (syst }))) \end{gathered}$	3.12 ± 0.70	3.12 ± 0.70

$W^{ \pm} W^{ \pm}$and $W^{ \pm} Z$ Effective Field Theory

Anomalous quartic gauge coupling search carried under EFT framework constraining dimension-8 operators.
Cannot define $m_{V V}, 2 \mathrm{D}$ variable with transverse mass m_{T} and $m_{j j}$

$$
m_{T}(V V)=\sqrt{\left.\left(\sum_{i} E_{i}\right)^{2}-\sum_{i} p_{z, i}\right)^{2}}
$$

G. Boldrini, 23/05/2023, LHCP 2023 - Belgrade

- 9 operators investigated
- No unitarization procedure is applied \rightarrow Clipping EFT predictions at limit
- No excess of events with respect to the SM is observed

Semi-leptonic VBS $W^{ \pm} V \rightarrow l \nu j j$

First LHC evidence of a semileptonic VBS process. Final state with 4 jets, one charged lepton + MET. Search for WV VBS where the $W^{ \pm} \rightarrow l^{ \pm} \nu_{l}$ and $V\left(W^{ \pm} / Z\right) \rightarrow q \bar{q}$

- Resolved regime: Four $R=0.4$ jets resolved in ΔR
- Boosted regime: Two $R=0.4$ and one $R=0.8$ jets for boosted decays of the
 V-boson

Backgrounds

- Dominant W+jets production \rightarrow data driven based corrections needed to simulations
- QCD induced VBS production
- Drell Yan + jets
- semileptonic $t \bar{t}$ and single top
- Non-prompt mainly from QCD-multijet, data driven estimate

Semi-leptonic VBS $W^{ \pm} V \rightarrow l \nu j j$

Poor description of dominant background in VBS

CMS

jets p_{T} and $p_{T}^{W, l}$. Differential data-driven
correction to MC

- Split $\mathrm{W}+$ jets MC in bins of $p_{T}^{W, l}$ and $p_{T}^{\mathrm{VBS}, 2}$, leave normalization freely floating in fit
- Closure check in W+jets CR outside the V resonance

Non-trivial jet tagging \rightarrow efficiency $\sim 70 \%$

- Tag as VBS the dijet pair with highest $m_{j j}$
- In resolved region, from the remaining jets, selected the one with mass closest to $\left(m_{W}+m_{z}\right) / 2=85 \mathrm{GeV}$

A DNN is used for signal extraction which improves the significance of a factor 3 with respect to $m_{j j}$

Semi-leptonic VBS $W^{ \pm} V \rightarrow I \nu j j$

Results reported for pure EW VBS production, for the joint fit with the QCD-induced background and in $\mathbf{2}$ dimensions for $\mu_{\mathrm{EW}}, \mu_{\mathrm{QCD}}$. Measurement agrees with SM expectations

Evidence for the VBS EW production of $\mathbf{W}^{ \pm} \mathbf{V} \rightarrow \mathbf{l} \nu \mathbf{j} \mathbf{j}$ with a significance of 4.4σ (5.1 expected)

$$
\begin{aligned}
& \mu_{\mathrm{EW}}=0.85 \pm 0.12(\text { stat })_{-0.17}^{+0.19}(\text { syst })=0.85_{-0.21}^{+0.23} \\
& \mu_{\mathrm{EW}+Q C D}=0.97 \pm 0.06(\text { stat })_{-0.21}^{+0.19}(\text { syst })=0.97_{-0.22}^{+0.20}
\end{aligned}
$$

Leptonic $W^{ \pm} W^{\mp} \rightarrow 2 / 2 \nu$

Final state with $\mathbf{2}$ VBS-jets, two isolated leptons with opposite charge and MET.
Background composition with lepton flavour significantly changes

- ee, $\mu \mu$ additional DY contribution
- e_{μ} DY reduced (low contamination from $\tau \tau \rightarrow \boldsymbol{e} \mu) \rightarrow$ Driving the sensitivity Fine regions definition based on $z_{l l}$ and $\Delta \eta_{j j}$.

CR post-fit yeld. Right: $e \mu$, Left $e e+\mu \mu$

Backgrounds

- Dominant leptonic $t \bar{t}$ and $t W$
- DY only in SF categories \rightarrow divided into PU and no-PU
- QCD-induced VBS. No CR for this background but normalization freely floating
- Nonprompt mainly from W+jets, data driven estimate

Leptonic $W^{ \pm} W^{\mp} \rightarrow 2 l 2 \nu$

Lepton-flavour dependent signal extraction

Different flavour $\mathbf{e} \boldsymbol{\mu}$

- DNN trained against $t \bar{t}, t W$ and QCD-VBS
- Different models for $Z_{l l}<1$ and $Z_{l l}>1$

Same flavour ee $/ \mu \mu$

- $5 m_{j j}$ bins for $m_{j j} \geq 500 \mathrm{GeV}$ and $\Delta \eta \geq 3.5$
- 3 orthogonal bins in $\Delta \eta$ and $m_{j j}$ with lower sensitivity

The VBS EW production of $W^{ \pm} W^{\mp}$ is

 observed with a significance 5.6σ (5.2expected)

Two fiducial volumes (inclusive and exclusive) used to measure the process cross-section. Good agreement with SM predictions at LO

Fiducial region	$\boldsymbol{\sigma}$ measured	$\boldsymbol{\sigma}$ SM@LO
Inclusive	$99 \pm 20 \mathrm{fb}$	$89 \pm 5 \mathrm{fb}$
Exclusive	$10.2 \pm 2.0 \mathrm{fb}$	9.1 ± 0.6

Conclusions

VBF W	8 TeV	JHEP 11 (2016) 147
VBF W	13 TeV	EPJC 80 (2020) 43
VBF Z	7 TeV	JHEP 10 (2013) 101
VBF Z	8 TeV	EPJC 75 (2015) 66
VBF Z	13 TeV	EPJC 78 (2018) 589
EW WV	13 TeV	Submitted to PLB
ex. $\gamma Y \rightarrow W$	88 TeV	JHEP 08 (2016) 119
EW qqW γ	8 TeV	JHEP 06 (2017) 106
EW qqW γ	13 TeV	SMP-21-011
EW os WW	13 TeV	Submitted to PLB
EW ss WW	8 TeV	PRL 114051801 (2015)
EW ss WW	13 TeV	PRL 120081801 (2018)
EW qqZ γ	8 TeV	PLB 770 (2017) 380
EW q q $Z \gamma$	13 TeV	PRD 104072001 (2021)
EW qqWZ	13 TeV	PLB 809 (2020) 135710
EW qqZZ	13 TeV	PLB 812 (2020) 135992

- VBS among the rarest processes to be measured at CMS
- final state with multiple leptons and high jets multiplicity: advanced techniques in order to isolate signal
- An excess (not significant) is observed in VBS measurements: need for further investigation and precise theory predictions for QCD-induced backgrounds
- Good agreement with SM so far

