# VBS/VBF measurements (without photons) at CMS

### Giacomo Boldrini 1,2

<sup>1</sup> University and INFN of Milano - Bicocca <sup>2</sup> On the behalf of the CMS collaboration



## Vector Boson Scattering

Vector boson scattering (VBS) happens at the LHC when the two incoming partons radiate electroweak vector bosons that interact with each other

- Without photons, VBS presents a 6-fermions final state: 2 jets coming from the initial state partons, 4 coming from the scattered bosons
- Peculiar kinematical properties: 2 jets in the forward region with high Δη<sub>jj</sub> and m<sub>jj</sub>, no additional hadronic activity in the rapidity gap

At LO VBS contributions come from **purely-EW processes**  $\alpha^6$ , **QCD-induced**  $\alpha_s^2 \alpha^4$  and the interference  $\alpha_S \alpha^5$ 

 $a^6$  Belgrade





## Vector Boson Scattering



VBS is a fundamental probe to understand the electroweak symmetry breaking mechanism (EWSB)

- The presence of the Higgs field regularizes the VBS cross-section by canceling exactly the E<sup>2</sup> behaviour of bosonic-only processes
- A delicate equilibrium: if the 2012 observed scalar does not behave precisely as the SM Higgs boson (δ), deviations can be detected in the energy-growth of VBS observables → New physics
- ► This behaviour is independent of the underlying BSM physics → A model-agnostic physics probe



Upper: A. Denner et. al., lower: K. Cheung et. al.

## Vector Boson Scattering at CMS





## VBS Landscape at CMS

Thanks to the integrated Run II Luminosity, VBS measurements are quickly populating the

experimental landscape of Standard Model (SM) measurements.

| $\sqrt{s}$ | L                     | Process                                           | Article                   | Comments                                              |
|------------|-----------------------|---------------------------------------------------|---------------------------|-------------------------------------------------------|
|            | 19.7 fb <sup>-1</sup> | EW Zjj $(l^+l^-jj)$                               | Eur.Phys.J.C75(2015)66    | 2016: <b>»5</b> σ                                     |
|            | 19.7 fb <sup>-1</sup> | EW W $^{\pm}jj(l^{\pm}\nu jj)$                    | JHEP11(2016)147           | 2016: <b>4</b> $\sigma$ , Run II: Ongoing             |
|            | 19.4 fb <sup>-1</sup> | EW $W^{\pm}W^{\pm}jj(2l2\nu jj)$                  | PhysRevLett.114.051801    | CMS finds $2\sigma$                                   |
| 8 ToV      | 19.7 fb <sup>-1</sup> | EW Zγjj(νν/llγjj)                                 | PhysLettB770(2017)380-402 | CMS finds $3\sigma$                                   |
| olev       | 19.7 fb <sup>-1</sup> | EW W <sup>±</sup> γjj(lvγjj)                      | JHEP06(2017)106           | CMS finds 2.7 $\sigma$                                |
|            | 19.4 fb <sup>-1</sup> | EW W <sup>±</sup> Zjj(3l <i>v</i> jj)             | PhysRevLett.114.051801    | CMS finds 2 $\sigma$                                  |
|            | 35.9 fb <sup>-1</sup> | EW Zjj(l <sup>+</sup> l <sup>-</sup> jj)          | Eur.Phys.J.C78(2018)589   | 2016: <b>»5</b> $\sigma$ , Run II: Ongoing            |
|            | 35.9 fb <sup>-1</sup> | EW W $^{\pm}jj(l^{\pm}\nu jj)$                    | Eur.Phys.J.C80(2020)43    | 2016: <b>»5</b> $\sigma$ , Run II: Ongoing            |
|            | 137 fb <sup>-1</sup>  | EW W <sup>±</sup> W <sup>±</sup> jj(2l2 $\nu$ jj) | PhysLettB809(2020)        | 2016: 5.5 $\sigma$ , Run II: » 5 $\sigma$             |
|            | 137 fb <sup>-1</sup>  | EW W <sup>±</sup> Zjj(3l <i>v</i> jj)             | PhysLettB809(2020)135710  | Run II: <b>6.8</b> σ                                  |
|            | 137 fb <sup>-1</sup>  | EW ZZjj(4ljj)                                     | PhysLettB812(2021)135992  | 2016: 2.7 $\sigma$ , Run II: 4 $\sigma$               |
|            | 137 fb <sup>-1</sup>  | EW Z $\gamma j j (l l \gamma j j)$                | PhysRevD.104.072001       | 2016: <b>4.7</b> $\sigma$ , Run II: »5 $\sigma$       |
| 13 TeV     | 35.9 fb <sup>-1</sup> | EW W $^{\pm}\gamma$ jj(l $ u\gamma$ jj)           | PhysLettB811(2020)135988  | 2016: <b>5.3<math>\sigma</math></b> , Run II: Ongoing |
|            | 138 fb <sup>-1</sup>  | EW W <sup>±</sup> Vjj(l <i>v</i> jjjj)            | PhysLettB834(2022)137438  | Run II: <b>4.4</b> $\sigma$                           |
|            | 138 fb <sup>-1</sup>  | EW W $^{\pm}$ W $^{\mp}$ jj(2l2 $\nu$ jj)         | PhysLettB841(2023)137495  | Run II: <b>5.6</b> <i>σ</i>                           |
|            | 138 fb <sup>-1</sup>  | EW VVjj(4j/2j2 <i>v</i> jj)                       |                           | Run II: Ongoing                                       |
|            | 138 fb <sup>-1</sup>  | EW VVpp(4jpp)                                     |                           | Run II: Ongoing                                       |
|            | 138 fb <sup>-1</sup>  | EW W $^{\pm}$ W $^{\pm}$ jj(2 $	au$ 2 $ u$ jj)    |                           | Run II: Ongoing                                       |
|            | 138 fb <sup>-1</sup>  | EW ZVjj(2ljjjj)                                   |                           | Run II: Ongoing                                       |
|            | 138 fb <sup>-1</sup>  | EW ZZjj(2l2 $\nu$ jj)                             | ·                         | Run II: Ongoing                                       |



This talk

## Leptonic VBS ZZ ightarrow 4l

Final state with **2 VBS-jets and two pairs of oppositely charged isolated leptons** with same flavour compatible with decay products of a *Z* boson.

#### Regions

- EW significance, total fiducial cross sections and search for aQGCs in ZZ-inclusive region m<sub>ii</sub> > 100 GeV
- fiducial cross section measurements done in two VBS-enriched regions with Δη > 2.4 and m<sub>jj</sub> > 400 GeV or m<sub>jj</sub> > 1 TeV
- One background control region with events from inclusive region not entering the loose VBS-enriched region

### Backgrounds

- ► Dominant QCD-induced ZZ production  $(q\bar{q} \rightarrow ZZ, gg \rightarrow ZZ)$
- ► *ttZ*+jets, *VVZ*+jets irreducible
- Fake and non-prompt leptons mainly from Z+jets but also tt+jets, WZ+jets

| Region    | EW-VBS | QCD-ZZ | Irr. | Z+jets |
|-----------|--------|--------|------|--------|
| Inclusive | 6.5%   | 82.3%  | 8.7% | 2.5%   |
| Loose     | 21.0%  | 71.7%  | 5.3% | 2.1%   |
| Tight     | 48.4%  | 46.2%  | 3.7% | 1.7%   |





## Leptonic VBS ZZ ightarrow 4l



### Signal extracted with Matrix Element Discriminant ( $K_D$ ). Check that

MVAs bring no significant gain

- Evidence for EW VBS production 4.0 σ (3.5 expected)
- Cross section (EW and EW+QCD) measured in three fiducial volumes with VBS-EW simulation at LO and NLO Good agreement with SM

| Region    | $\sigma$ (EW) fb                                             |
|-----------|--------------------------------------------------------------|
| Inclusive | $0.33^{+0.11}_{-0.10}$ (stat) $^{+0.04}_{-0.03}$ (syst)      |
| Loose     | $0.180^{+0.070}_{-0.060}$ (stat) $^{+0.021}_{-0.012}$ (syst) |
| Tight     | $0.09^{+0.04}_{-0.03}$ (stat) $\pm$ 0.02(syst)               |

**Limits on Wilson coefficients (W.c.) of transverse (T) dimension-8 operators** extracted from  $m_{4l}$  distribution. The VBS-ZZ is extremely sensitive to charged ( $T_0$ ,  $T_1$ ,  $T_2$ ) and neutral operators ( $T_8$ ,  $T_9$ )

• **Unitarization** of the scattering amplitude  $|A_{SM} + \frac{f_i}{\Lambda^4} A_{\mathcal{O}_8}|$  taken into account

### No significant deviations from SM observed

| Coupling               | Exp. lower | Exp. upper | Obs. lower    | Obs. upper  | Unitarity bound |
|------------------------|------------|------------|---------------|-------------|-----------------|
| $f_{\rm T0}/\Lambda^4$ | -0.37      | 0.35       | -0.24 (-0.26) | 0.22 (0.24) | 2.4             |
| $f_{\rm T1}/\Lambda^4$ | -0.49      | 0.49       | -0.31(-0.34)  | 0.31 (0.34) | 2.6             |
| $f_{\rm T2}/\Lambda^4$ | -0.98      | 0.95       | -0.63(-0.69)  | 0.59 (0.65) | 2.5             |
| $f_{\rm T8}/\Lambda^4$ | -0.68      | 0.68       | -0.43(-0.47)  | 0.43 (0.48) | 1.8             |
| $f_{\rm T9}/\Lambda^4$ | -1.5       | 1.5        | -0.92 (-1.02) | 0.92 (1.02) | 1.8             |



## Leptonic VBS $W^{\pm}W^{\pm} ightarrow 2l^{\pm}2 u$



Final state with 2 VBS-jets, two isolated leptons with same charge and MET. A Significant background comes from VBS-WZ  $\rightarrow$  measure  $W^{\pm}W^{\pm}$  and WZ together

Golden channel: the presence of two same-signed leptons reduces drastically the QCD-induced background



G. Boldrini, 23/05/2023, LHCP 2023 - Belgrade

#### Backgrounds

- Dominant non-prompt, estimated from data
- Wrong-sign from mischarge identification mainly from Z+jets
- **EW VBS** *W*<sup>±</sup>*Z* where one Z-lepton is lost
- QCD-induced W<sup>±</sup>W<sup>±</sup> + 2jets and W<sup>±</sup>Z + 2jets
- QCD and EW induced ZZ + 2jets

**The Zeppenfeld variable**  $Z_l$  used to reduce QCD-induced background  $Z_X = |\eta_X - \bar{\eta_j}|/|\Delta \eta_{jj}|$ . Plot from P. Govoni, C. Mariotti





Maximum Likelihood (ML) fit to 5 regions simultaneously. Including NLO EW+QCD corrections ( $\mathcal{O}(10\%)$ ) at order  $\alpha^7$ ,  $\alpha_5 \alpha^6$  to VBS  $W^{\pm}W^{\pm}$  and WZ



### Observables

- $\blacktriangleright$   $W^{\pm}W^{\pm}$  signal extracted with **2D variable**: m<sub>il</sub> and m<sub>ii</sub>
- Boosted Decision Tree trained for EW VBS W7
- m<sub>ii</sub> to measure WZ-QCD and ZZ normalization from data

The VBS EW production of  $W^{\pm}W^{\pm}$  is observed with a significance »  $5\sigma$ 

Leptonic VBS  $W^{\pm}Z 
ightarrow 3l
u$ 

The VBS production of WZ is treated as a background to the  $W^{\pm}W^{\pm}$  analysis but is an interesting process by itself. Measured together with  $W^{\pm}W^{\pm}$ .

Backgrounds

- Dominant QCD induced
- Non-prompt estimated from data
- Wrong-sign from mischarge identification mainly from Z+jets
- QCD and EW induced ZZ + 2jets

In order to reduce the overwhelming QCD background a **BDT is employed to extract the signal** trained with reported variables

| Variable                     | Definition                                                                  |  |  |
|------------------------------|-----------------------------------------------------------------------------|--|--|
| m <sub>ii</sub>              | Mass of the leading and trailing jets system                                |  |  |
| $\Delta \tilde{\eta}_{ii}$   | Absolute difference in rapidity of the leading and trailing jets            |  |  |
| $\Delta \phi_{ii}$           | Difference in azimuth angles of the leading and trailing jets               |  |  |
| $p_{T}^{j1}$                 | $p_T$ of the leading jet                                                    |  |  |
| $p_{T}^{j2}$                 | $p_T$ of the trailing jet                                                   |  |  |
| $\eta^{j1}$                  | Pseudorapidity of the leading jet                                           |  |  |
|                              | Absolute difference between the rapidities of the Z boson                   |  |  |
| $ \eta^{-} - \eta^{-} $      | and the lepton from the decay of the W boson                                |  |  |
| $a^{*}(i = 1, 2, 2)$         | Zeppenfeld variable of the three selected leptons:                          |  |  |
| $Z_{\ell_i}(t = 1, 2, 3)$    | $z_{\ell}^* =  \eta_{\ell_i} - (\eta_{i1} + \eta_{i2})/2 /\Delta \eta_{ii}$ |  |  |
| Z <sup>*</sup> <sub>24</sub> | Zeppenfeld variable of the triple-lepton system                             |  |  |
| $\Delta R_{i1,Z}$            | The $\Delta R$ between the leading jet and the Z boson                      |  |  |
| i Zali cen i                 | Transverse component of the vector sum of the bosons                        |  |  |
| $ p_T^{ivs} /\Sigma_i p_T^i$ | and tagging jets momenta, normalised to their scalar pT sum                 |  |  |



The VBS EW production of W $\pm$ Z is observed with a significance of 6.8 $\sigma$  (5.3 expected)





# **Inclusive and differential cross-sections measurements** are reported in fiducial phase spaces for $W^{\pm}W^{\pm}$ and $W^{\pm}Z$ with selections targeting VBS-signature. Good agreement with SM

| Process            | $\sigma \mathcal{B}$ (fb)                                | Theory prediction (fb) | Theory prediction with<br>NLO corrections (fb) |
|--------------------|----------------------------------------------------------|------------------------|------------------------------------------------|
| $EWW^\pm W^\pm$    | $3.98 \pm 0.45$<br>(0.37 ( (stat)) $\pm 0.25$ ( (syst))) | $3.93\pm0.57$          | $3.31\pm0.47$                                  |
| EW+QCD W^\pm W^\pm | $4.42 \pm 0.47$<br>(0.39 ( (stat)) $\pm 0.25$ ( (syst))) | $4.34\pm0.69$          | $3.72\pm0.59$                                  |
| EW WZ              | $1.81 \pm 0.41$<br>(0.39 ( (stat)) $\pm 0.14$ ( (syst))) | $1.41\pm0.21$          | $1.24\pm0.18$                                  |
| EW+QCD WZ          | $4.97 \pm 0.46$<br>(0.40 ( (stat)) $\pm 0.23$ ( (syst))) | $4.54\pm0.90$          | $4.36\pm0.88$                                  |
| QCD WZ             | $3.15 \pm 0.4$<br>(0.45 ( (stat)) $\pm 0.18$ ( (syst)))  | $3.12\pm0.70$          | $3.12\pm0.70$                                  |



### $W^{\pm}W^{\pm}$ and $W^{\pm}Z$ Effective Field Theory

Anomalous quartic gauge coupling search carried under EFT framework constraining dimension-8 operators.

Cannot define  $m_{\rm VV}$  , 2D variable with transverse mass  $m_{\rm T}$  and  $m_{jj}$ 

- > 9 operators investigated
- ► No unitarization procedure is applied → Clipping EFT predictions at limit
- No excess of events with respect to the SM is observed



## Semi-leptonic VBS $W^{\pm}V ightarrow l u jj$



- First LHC evidence of a semileptonic VBS
- **process.** Final state with 4 jets, one charged lepton + MET. Search for WV VBS where the  $W^{\pm} \rightarrow l^{\pm}\nu_l$  and  $V(W^{\pm}/Z) \rightarrow q\bar{q}$ 
  - **Resolved regime**: Four R = 0.4 jets resolved in  $\Delta R$
  - Boosted regime: Two R = 0.4 and one R = 0.8 jets for boosted decays of the V-boson

### Backgrounds

- ► Dominant W+jets production → data driven based corrections needed to simulations
- QCD induced VBS production
- Drell Yan + jets
- semileptonic  $t\bar{t}$  and single top
- Non-prompt mainly from QCD-multijet, data driven estimate









## Semi-leptonic VBS $W^{\pm}V \rightarrow l \nu j j$



Results reported for **pure EW VBS** production, for the joint fit with the **QCD-induced background** and in **2 dimensions** for  $\mu_{EW}$ ,  $\mu_{OCD}$ . Measurement agrees with SM expectations



## Leptonic $W^{\pm}W^{\mp} \rightarrow 2l2\nu$



# Final state with 2 VBS-jets, two isolated leptons with opposite charge and MET.

Background composition with lepton flavour significantly changes

- ee,  $\mu\mu$  additional DY contribution
- $e_{\mu}$  DY reduced (low contamination from  $\tau \tau \rightarrow e_{\mu}$ )  $\rightarrow$  Driving the sensitivity

### **Fine regions definition** based on $Z_{ll}$ and $\Delta \eta_{ij}$ .

Backgrounds

- Dominant leptonic tt and tW
- ► DY only in SF categories → divided into PU and no-PU
- QCD-induced VBS. No CR for this background but normalization freely floating
- Nonprompt mainly from W+jets, data driven estimate



CR post-fit yeld. Right:  $e\mu$ , Left ee +  $\mu\mu$ 



## Leptonic $W^{\pm}W^{\mp} \rightarrow 2l2\nu$





#### Lepton-flavour dependent signal extraction

#### Different flavour $e\mu$

- DNN trained against tt, tW and QCD-VBS
- Different models for  $Z_{ll} < 1$  and  $Z_{ll} > 1$

### Same flavour ee/ $\mu\mu$

- ▶ 5  $m_{jj}$  bins for  $m_{jj} \ge$  500 GeV and  $\Delta \eta \ge$  3.5
- 3 orthogonal bins in Δη and m<sub>jj</sub> with lower sensitivity

The VBS EW production of  $W^{\pm}W^{\mp}$  is observed with a significance 5.6 $\sigma$  (5.2 expected)

Two fiducial volumes (inclusive and exclusive) used to measure the process cross-section. Good agreement with SM predictions at LO

| Fiducial region | $\sigma$ measured | $\sigma$ SM@LO |  |
|-----------------|-------------------|----------------|--|
| Inclusive       | 99 $\pm$ 20 fb    | 89 $\pm$ 5 fb  |  |
| Exclusive       | 10.2 $\pm$ 2.0 fb | 9.1 $\pm$ 0.6  |  |

17

## Conclusions





- VBS among the rarest processes to be measured at CMS
- final state with multiple leptons and high jets multiplicity: advanced techniques in order to isolate signal
- An excess (not significant) is observed in VBS measurements: need for further investigation and precise theory predictions for QCD-induced backgrounds
- Good agreement with SM so far