









# **Event-by-event fluctuations at the LHC**

Tapan Nayak (NISER/CERN) for ALICE, ATLAS & CMS collaborations









#### **Event-by-event fluctuations of particle multiplicites:**

η - coverage

 $p_{T}$  coverage (GeV/c)

 probe the properties and phase structure of strongly-interacting matter, probing the nature of phase transition;

 $|\eta|$  < 0.8

> 0.15

 $|\eta|$  < 2.5

>0.3

- are ideal to study thermodynamics of the produced system;
- test lattice QCD predictions at  $\mu_B$ =0;
- complementary to RHIC Beam Energy Scan Program, FAIR, NICA, and J-PARC.

**CMS** 

 $|\eta| < 2.4$ 

>0.3



### Nature of chiral phase transition

#### **Lattice QCD calculations**



- Critical behavior in the limit of vanishing light quark masses --- the chiral Phase Transition
- Vanishing u, d quark masses
  - $\Rightarrow$  vicinity to 2<sup>nd</sup> order O(4) criticality
  - ⇒ pseudocritical features at the crossover



ightharpoonup Quantitative **agreement** of chemical freeze-out parameters **with the most recent LQCD predictions** for  $\mu_B$  < 300 MeV

$$\Rightarrow T_{\rm pc}^{\rm LQCD} \approx T_{\rm fo}^{\rm ALICE} = 156.5 \pm 3 \, MeV$$

PLB 795 (2019) 15, PRL 125 (2020) 052001



## **Lattice QCD meets experiment**

Thermodynamic susceptibilities (response of a thermalized system to changes in external conditions): conserved charge fluctuations

• Lattice QCD calculations: Taylor expansion of the QCD pressure:

#### Deviations from the Baseline:

- $\circ$  Baseline: difference of two Skellams:  $\kappa_{\rm n}/\kappa_{\rm 2}$  is 0 (odd) or 1 (even);
- o up to 3<sup>rd</sup> order HRG model agrees with LQCD at  $\mu_B$  = 0;
- o higher order → larger deviations: 4<sup>th</sup> order ~30%, 6th order ~150%.
- **Experiment:** within GCE, susceptibilities are related to event-by-event fluctuations of the number of conserved charges.

$$\Delta N_B = X = N_B - N_B$$
,  $\kappa_n \rightarrow$  central moments of X

$$\hat{\chi}_{2}^{B} = \frac{\kappa_{2}(\Delta N_{B})}{VT^{3}} \quad \Longrightarrow \quad \frac{\kappa_{4}(\Delta N_{B})}{\kappa_{2}(\Delta N_{B})} = \frac{\hat{\chi}_{4}^{B}}{\hat{\chi}_{2}^{B}}$$

**Cumulants** 

**Higher orders** 





### **Net-proton fluctuations**

ALICE collaboration, arXiv: 2206.03343



- 2<sup>nd</sup> order: **Deviation from Skellam baseline** due to Baryon number conservation
- long-range correlations ( $\Delta \eta$  about ±2.5) originating from earlier in time



3<sup>rd</sup> order: data agree with Skellam baseline "0"



### Hadron gas:

# **Net-charge fluctuations**



confined, few d.o.f



Dynamical net-charge fluctuations:

$$\nu_{[+-,dyn]} = \frac{\langle N_+(N_+-1)\rangle}{\langle N_+\rangle^2} + \frac{\langle N_-(N_--1)\rangle}{\langle N_-\rangle^2} - 2 \frac{\langle N_+N_-\rangle}{\langle N_+\rangle\langle N_-\rangle}$$







ALI-PREL-495743

- Scaled  $V_{dyn}[+,-]$  shows increasing correlations with increasing multiplicity for all systems,
- net-charge fluctuations are strongly dominated by resonance contributions.



### **Anti-deuteron number fluctuations**

to distinguish between nucleosynthesis models (thermal vs. coalesence)



- Anti-deuteron fluctuation is consistent with Poisson baseline,
- canonical Ensemble (CE) SHM consistent with data, with no significant effect of baryon number conservation.

#### **Antiproton-antideuteron Pearson correlation**



 Negative correlation: in events with at least one anti-deuteron, O(0.1%) less antiprotons than an average event.



## **Multiplicity fluctuations**

⇒ **Isothermal compressibility** (expresses how a system's volume responds to a change in the applied pressure.)

#### **Charged-particle multiplicities**



$$\omega_{\mathrm{ch}} = \frac{k_{\mathrm{B}}T\langle N_{\mathrm{ch}}\rangle}{V}k_{T}$$

#### For central collisions:

- $T_{ch} = 0.156 \pm 0.002 \text{ GeV}$
- Volume= 5330 ± 505 fm<sup>3</sup>
- $\langle N_{ch} \rangle = 1410 \pm 47 \ (syst)$

ALICE collaboration: EPJC 81 (2021) 1012



Fluctuations above the Poisson estimation gives  $\omega_{ch} = 1.15 \pm 0.06$ .

=> 
$$k_{\rm T}$$
 upper limit = 27.9 ± 3.18 fm<sup>3</sup>/GeV.



## Fluctuations of mean $p_T$

- results from fluctuations of the energy of the fluid when the hydrodynamic expansion starts.
- $\langle p_{\mathsf{T}} \rangle$  is a proxy to the system temperature => measure of **temperature fluctuations**  $\Rightarrow$  **heat capacity**.





**ALICE Preliminary** 

$$\langle \Delta p_{\rm i} \Delta p_{\rm j} \rangle = \left\langle \frac{\sum_{i,j \neq i} (p_{\rm i} - \langle p_{\rm T} \rangle)(p_{\rm j} - \langle p_{\rm T} \rangle)}{N_{\rm ch}(N_{\rm ch} - I)} \right\rangle$$

Scaled variance: 
$$\sqrt{\langle \Delta p_{\mathrm{Ti}} \Delta p_{\mathrm{Tj}} \rangle / \langle \langle p_{\mathrm{T}} \rangle \rangle}$$

 Fluctuations decrease with increasing multiplicity and increase w/t beam energy.

ALI-PREL-526499

9



# Higher-order fluctuations of mean $p_T$

 $\Rightarrow$  detailed probes of QCD thermodynamics at higher T, achieved during the early stages of the collision.

#### **Skewness (3-particle correlator):**

ALICE Preliminary

#### **Kurtosis (4-particle correlator):**

$$\langle \Delta p_i \Delta p_j \Delta p_k \rangle \equiv \left\langle \frac{\sum_{i,j \neq i,k \neq i,j} \left(p_i - \langle \langle p_t \rangle \rangle\right) \left(p_j - \langle \langle p_t \rangle \rangle\right) \left(p_k - \langle \langle p_t \rangle \rangle\right)}{N_{\rm ch} \left(N_{\rm ch} - 1\right) \left(N_{\rm ch} - 2\right)} \right\rangle$$

$$\begin{array}{c} 25 \\ \text{ALICE Preliminary} \\ \text{Pb-Pb, } \sqrt{s_{\rm NN}} = 5.02 \, {\rm TeV} \\ \text{$\star$ Xe-Xe, } \sqrt{s_{\rm NN}} = 5.44 \, {\rm TeV} \\ \text{$\bullet$ pp, } \sqrt{s} = 5.02 \, {\rm TeV} \end{array}$$

ALICE Preliminary

Pb-Pb,  $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ \* Xe-Xe,  $\sqrt{s_{NN}} = 5.44 \text{ TeV}$ \* pp,  $\sqrt{s} = 5.02 \text{ TeV}$ Independent Baseline

--Pb-Pb ....Xe-Xe --pp  $[\eta/s = 0.047]$ 0.2 <  $p_T$  < 3.0 GeV/c,  $|\eta|$  < 0.8

Incertainities: stat. (bars), sys. (boxes)

10

 $\left\langle \, \mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta \, \right\rangle_{|\eta|<0.5}$  • Positive intensive skewness excess from its baseline value observed - indicates hydrodynamic evolution.

 $10^{2}$ 



- Mild dependence on multiplicity,
- Approaches Gaussian baseline at high multiplicities.



0.06

\$ 0.04

0.02

 $0.00^{-2}_{0.0}$ 

### Accessing precursor stage of QGP formation



0.1



0-5%

0.3

0.2

 $\varepsilon_2$ 

Correlated fluctuations in shape  $(\varepsilon_n)$  and size (R) in the initial state: measured using Pearson Correlation:

$$\rho(\epsilon_n^2, \delta R) = \frac{cov(\epsilon_n^2, \delta R)}{\sqrt{var(\epsilon_n^2)var(\delta R)}}$$

Initial State to Final State



### $=> \nu_n$ - mean- $p_T$ correlations

- (i) Constrain the initial state, and
- (ii) nuclear deformation.

11



## $v_n$ – mean $p_T$ correlations



LHCP2023: Tapan Nayak



# $v_n$ – mean $p_T$ correlations



ALICE collaboration, PLB 834 (2022) 13793

- Data shows positive correlation between  $v_n$  and  $p_T$
- The centrality dependence of  $\rho$  is better described by IP-Glasma than by Trento,
- These are sensitive to the nucleon width parameter (size of nucleon) => new constraints on the nucleon size,
- ALICE data agrees with an effective nucleon width of the order of 0.4 fm => transverse radius of 0.56 fm.



### $\nu_{\rm n}$ – mean $p_{\rm T}$ correlations

CMS collaboration, CMS-PAS-HIN-21-012



Explore the correlator with different  $\eta$  gaps to study nonflow effects



- apparent sign change is observed for  $\rho(c_2\{2\}, [p_T])$  in pp and p-Pb,
- no sign change is observed in case of  $|\eta| > 1.0$ ,
- positive correlation at high multiplicities.

**Peripheral** 



### Fluctuations of charm quark azimuthal anisotropies



- >Two-particle correlations:  $v_2\{2\} \simeq \langle v_2 \rangle + \frac{1}{2} \frac{\sigma_{v_n}^2}{\langle v_2 \rangle}$
- > Four-particle correlations:  $v_2\{4\} \simeq \langle v_2 \rangle \frac{1}{2} \frac{\sigma_{v_n}^2}{\langle v_2 \rangle}$
- D<sup>o</sup> compatible with charged hadrons in 10-40% centrality:
  - suggesting that initial fluctuations are dominant,
- indication of discrepancies in more peripheral collisions:
  - o potential final-state effects.

CMS collaboration, PRL 129 (2022) 022001





### **Summary and outlook**







- Event-by-event fluctuations of conserved charges:
  - effect of baryon number conservation to be understood.
- Anti-deuteron fluctuation and correlation with anti-proton:
  - coalescence models do not simultaneously describe both observables;
  - SHM: simultaneously describe both but with a small correlation volume.
- Multiplicity fluctuation => upper limit on isotheral compressibility.
- Mean-p<sub>T</sub> fluctuations decrease with increasing multiplicity.
- Higher-order fluctuations of mean- $p_T$ :
  - positive intensive skewness indicates hydrodynamic evolution.
- $v_n$  mean  $p_T$  correlations:
  - apparent sign change in correlation in pp and p-Pb;
  - positive correlation at high multiplicities;
  - small transverse radius of the nucleon.
- Fluctuations of charm quark (D<sup>0</sup>) azimuthal anisotropies:
  - compatible with charged hadrons in 10-40% centrality.

The physics program of future experiments provides excellent opportunities for fluctuation measurements with large acceptance + excellent coverage down to low  $p_T$ .