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Background and Motivation Quarkonia in a microscopic model Conclusions

Quarkonia production in Heavy lon Collisions

Two main effects if Quark Gluon Plasma: (sequential) suppression Matsui & Satz 1986
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Background and Motivation Quarkonia in a microscopic model Conclusions

Quarkonia production in Heavy lon Collisions

Two main effects if Quark Gluon Plasma: Regeneration (production from 2 distinct
initial Q-Qbar pairs) Braun-Munzinger, Stachel & Andronic + Thews (early 2000)
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Background and Motivation Quarkonia in a microscopic model Conclusions

Quarkonia production in Heavy lon Collisions

These 2 mechanisms and the abundance of experimental data have the

potentialities to better understand the forces acting on HQ inside QGP and probe its
(short lived) evolution.

BUT
One is facing a dual question : what is the nature of a quarkonia inside a QGP ?
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Background and Motivation Quarkonia in a microscopic model Conclusions

Two types of dynamical modelling

(and a 3rd class of its own: statistical hadronization)

T > Fhind T ~ Epind T' < Eyind

Quantum Brownian Motion Quantum Optical Regime

ons for
Qbars)

Since one is facing both dissociation and recombination, obtaining a correct equilibrium
limit of these model is an important prerequisite !!!
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Several motivations to go microscopic & quantum

* The in-medium quarkonia are not born as such. One needs to develop an initial compact
state to fully bloomed quarkonia

* The dissociation-recombination reactions affecting quarkonia are not instantaneous... In
dense medium, the notion of cross section should be replaced by the more rigorous
open-guantum system approach (continuous transitions)

* Better suited for « from small to large »

e Extra complication: For RHIC and LHC : many c-cbar pairs !
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Pioneering work of Blaizot and Escobedo for many c-cbar pairs => Semi-Classical Fokker-Planck
+ gain/loss rates for color transitions; awaits for implementation in realistic conditions 6
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The spirit of the method...

PY (t) = Tr [ﬁgQﬁN (t))] Simply taken at the end of the evolution (ideal world)
q] . / .
pr — Zz "PQQ><\IJQQ|

Various Quarkonia bound states (in vacuum)

Unfortunately... all N-body practionners know that modelling the full system up to the last
stage is quite challenging ! Issues of stability, energy conservation,...

Clear lesson from the « old » cascade and QMD codes for fragment formation

L Replace « final » => « initial » + Sum of time steps and chop off at the appropriate
time scale

[P‘I’(t) = PY(tg) + j;i I;(t’)dt’}

\

Caution : Not the usual decay rate

Convergence towards statistical equilibrium in a fixed temperature QGP recently
demonstrated in arxiv 2302.14001
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The spirit of the method...

Dealing with the dynamics ? Von Neumann equation

If eigenstates of the « internal » 2-body (QQbar) interaction

Free evolution =>1'=0

o /
QA No « late time »
— —‘— evolution in this
U, + Us eigenbasis
/\ B

Interaction with a 3rd body => modification of the ﬁg@

» . B I"I’(t):—iTT[,é‘I’[Uv{F/(:f%ﬁN(t)H

Total interaction of Q and Qbar with all light partons

6 - Source of « destruction » <> imaginary potential
ubatech



Background and Motivation Quarkonia in a microscopic model EA RemlerCRRﬁW,&iEgSOF

Remler Formalism at work  rivsics 136, 203.316 (1081)

Level of the modelling : semi classical for the Q-Qbar evolution => Wigner distributions
instead of density operators

Combining the expression of the Wigner’s distribution and substituting in the effective
rate equation :

F\I!(t) ~ Zi:l,? 2323 5(75_755;1) dpz—dxz W\Ij (p17$1;p2,332) e WgQ(phﬂ?ﬁpz,sz)

-

* The quarkonia production in this model is a W- Qbar W+
—_—— .

three body process; the HQs interact only by
collisions with the QGP !!!

* The “details” of H, . between HQ and bulk
partons are incorporated into the evolution of
W, after each collision / time step (nice
feature for the MC simulations)

* Dissociation and recombination treated in the | col
same scheme

Interaction of HQ with the QGP are
Then: PY () = P‘P (to) + f t’ A’ carried out by EPOS2+MC@HQ
to (good results for D and B mesons

6Ub0_ NB: Also possible to generate similar oroduction) Eur. Phys. J. C (2016) 76:107

‘ech relations for differential rates
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Extension of the Remler formalism

 Confining Q) forces inside the MC evolution ; large impact on the # of close
pairs... and correlated trajectories.

(No internal potential in early applications

%2 dedicated to deuteron production in low
energy AA collisions; advocated to be
negligible... as only the « hot zone » was
contributing

ReV |GeV]

4 [ But for quarkonia, it turns out not to be the
case => need for in-medium potential

D. Lafferty and A. Rothkopf,
r [fm| PHYS. REV. D 101, 056010 (2020)

Correlated SC
trajectories

Complicated relativistic N-body problem... Only stable at « not too high » p;

gubot@ch
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The 3 layers of the numerical modelling

Initial state evolution

EPOS initial condition
Background +transverse positions of the Fluid dynamics
NN collisions

Initialisation of c-cbar Evolution of HQ according to
HQ level pairs according to FONLL? » MC@HQ + c-cbar in-medium
& EPOS positions potential

Correlated SC trajectories

S,Ub"c/ngech

11
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The dynamics of c-cbar correlation
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* The c-cbar potential (« pot ON ») leads to a huge increase of the c-cbar

probability at close distance at large times (not a random Poisson distribution !)...

* ... Especially when the collisions with the QGP (« coll ») are switched ON as well

Suboze ch
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The 3 layers of the numerical modelling

Initial state evolution

EPOS initial condition
Background +transverse positions of the
NN collisions

Fluid dynamics

& T

HQ level |:>

Correlated SC
trajectories

Quarkonia level Initial J/w(T) P (t,) Evaluation of I

when T(x) < Ty,

according to improved
Remler + I, ..

We do not have J/y quasi particles in our approach, just correlated c-cbar trajectories

bétech
ubatec 13
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Results : J/y production vs time

Delayed initial
production as | PbPb /5=5.02 TeV |y| < 0.9 - PbPb /5=5.02 TeV |y| < 09
T>T ..ina \ N
large volume Vcc‘: off 2 ="
l{]—l _\ ____________________________ 4 ]“ o e ——————
> 2t Al TN =z 10-2
%gl{]—ﬁ ﬁﬁﬁﬁﬁﬁﬁ Z[® - e
) )T 10 ;
0 T f -,
: - : —— [20-40%] 2| c& potential: on — [jﬂ-ﬁ.[l':'i-;]
2 | ec potential: off r—s= [40-60%] 10—
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timelf
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* Without interaction potential between c and cbar, the collisions with the medium
manage to destroy the native J/y (left)

* With the interaction potential between c and cbar « on », one observes a steady
rate of J/\y creation (increase of I'®!, increase of I''°<?!)... No adiabaticity, but no
instantaneous formation either.

guboseclw
L 14
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Quarkonia in a microscopic model Conclusions

Results : J/y production vs p;

scaled pp /s= 5.02 TeV |y| < 0.9
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Equivalent pp production (the
denominator of the R,,) : c-cbar
according to FONLL? without any
correlation, then coalescence with
the Wigner distribution.

No feed-down from higher states (to
be implemented)

Acceptable for p; <5 GeV/c, but
deviations for higher p.

To investigate : more appropriate

scheme for c-cbar production,
including c-cbar correlation : EPOS4

15
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Quarkonia in a microscopic model

Conclusions

Results : J/y production vs p;

PbPb /5=5.02 TeV |y| < 0.9

B ALICE .J/v inclusive
global shadowing 50%

O%-ZO%_'

==== Coll:
== (Coll:

Coll:
— Coll:

Pt

J /i

GeV]

PbPb /s=5.02 TeV |y| < 0.9

-
- -~
.,

[0 —20%)] central
=== all
- diagonal

From .t\we same NN copllision,

™. best proxy to « primordial »

collisions: on
potential: on

global shadowing 50% “
1 1

0

1 2

3

4 5

Raa

PbPb ,/5=5.02 TeV |y| < 0.9

9
‘_“U || ALICE (inclusive)[0 — 20%] central
]_8 F global shadowing 50%

=== Coll: off; Pot: off
]_6 r === Coll: off; Pot: on

Coll: on; Pot: off

]_—'l r = Coll: on; Pot: on
1.3 |
1.0
0.8
0.6 r
04+
02
0.0

0 1 2 3 456 7 8 9 10
J /Y
PT/' GeV]
Dynamical recombination is quite
effective at low p;

At higher p;, we are missing J/y as
compared to the experimental value.

Several possible reasons, under
investigation:
o interms of transport model :
« primordial too much suppressed »
o lack of c-cbar correlation in the IS
o .. 16



Background and Motivation

Raa

Caveat : too crude modelling of the
thermalization in the bulk... assumed
to happen after 0.35 fm/c
independent of the centrality

=> ¢ and cbar created at t=0 have the
time to diffuse away => reduction of
the production

Quarkonia in a microscopic model Conclusions

Raa VS N
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One possible solution : core — corona

model for c-quarks : c-quarks with
momentum transfer < q_,,,, are
considered to combine -> quarkonia as in
vacuum...

Optimal value : corona, q,,,,,=1.2 GeV
17
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Results : J/y v,

0.5

#

- PbPb-5TeV-[30%;50%] SN
04f —— all
- ---- diag. Mo corona effect

03F W ALICE(25<y<4)

vo(J/p)

pr(GeV)

* v, excess as compared to experimental data (late formation of the J/y due to
binding potential under restoration)

* Without corona, the « diagonal » contribution shows no difference wrt the full
production, what is a bit conter-intuitive

e Corona has large effect on v2, even with moderate qy,..,- As the corona mostly

affects the diagonal part, one recovers vglag < 3l 18
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Recent news

Applying the Wigner coalescence approach for bottomonia in pp (and in PbPb),
starting from b-bbar pQCD spectra: 2305.10750

Y(nS)inp+p @ 5.02 TeV

S N L LA R L L L B 10° 5
Y(1S) Y(2S) Y(3S) 1 :

| ALICE,CMS e ® °

10?4 PHSD .

Y(nS) in p+p @ 5.02 TeV (Jy|<2.4)

Bd’c/dydp, (nb/GeV)

Good overall description with a pretty simple model

19
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Conclusions and Perspectives

» First move towards a microscopic approach based on individual ¢ and
cbar dynamics implementing some of the open quantum systems
features for charmonia production in realistic HI conditions :
dynamical coalescence

» Encouraging results, but still many features to be refined

» Rooms for improvement :

O
O
O

Include excited states decay

Including color transparency and more generally color dynamics
More reliable treatment of the fully relativistic evolution of a N-
body coupled system (under construction)

Upgrading to EPOS4 => More realistic « initial state » for the c-
cbar pairs, including correlations at intermediate p-.

Late interactions with hadronic phase

20



Back up

21
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Conclusions

Quantum coherence at early time

4_

»(18) ¥(2S)
I/I ‘; | 2 3

Q@
Initial compact state : o

_4_

2

QQ
Coherence/ \ Neglect of coherence

D(rgo) = 0 o< 3 chei(hilr?ihs) — Toc 3o |ei2(@halr? i) = 3, el Ty # 0

Dissociation rate: I'(rgg) o asT x ®(mprog) ~ agT? xr

Crucial to include coherence !

N.B. : one can model this effect by phenomenological formation time, but lack of control

22
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Quarkonia in a microscopic theory

Conclusions

Quantum coherence

Picture behind transport theory :

fp()
p @
g c /
N
£ C \t‘!&\_
p @ —
£p(e)

D Open heavy flavor and quarkonia
open charm assumed to be uncorrelated
D
: Formed after some “formation
-:halmmuum
1/ time” T; (typically the Heisenberg

time), usually assumed to be
independent of the surrounding

medium

Common belief in the transport community:

Quarkonia initially « formed » in QGP and survive with an individual

survival probability

S(t) = e e TN

23
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The two sides of color transparency

T'rel T'rel
Q-Qbar propagation in QGP. 0 X ‘.:: — ‘.:
° °
If ro <<le : White object => no If ro>= l e : 2 HQinteract
Energy loss individually with QGP.

1
lcorrel ™~ - (soft modes)

Small T: 7Tyl > 1?% Large T: Tye] Z % A~ gLT
white | Indep. scattering
| >
&Smc T

* Most of the transport models have considered up to now that primordial charmonia
can just be destroyed (with a small probability), but not deflected.

* In our approach, we have investigated the consequences of considering the opposite
limit... with too large v, resulting from this prescription...

6Ub0t®ch
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Remler’s formalism for dynamical coalescence

Generic idea : describe charmonia (V) production using density matrix

PY(t) = Tr | p%oin (1))]
W, , , / \ N-body density matrix (bulk partons +
pAQ“Q — ZZ |\If’226—2)<\1122@‘ many c and many cbar)

Single quarkonia density operator
T. Song, J.Aichelin and E.Bratkovskaya,

“Just” looking at the initial stage brings interesting features: PRC 96. 014907 (2017)
101 100: ® T B 1 ¥ T L T N I L 1
pFIJ "« ALICE @ 576 TeV ('2.5<|y<4)§ 1 0-20 % central Pb+Pb @ 2.76 TeV
direct Jiy ' Primordial
< c-=48+/-08mb = y' => Jhytrtr] 1 PbPb /
0 ¢ -1 ot HEEE W
e 1YV /™8,. - Aoy => Sty 2 ] - . ]
2 ce-B > JyX = -z
S 10" total J/y © c.=4.8 mb
kS ] 1074 o . RV
g ] - = = =without mixing -
- with mixing v
105 3 I —— with mixing (twice radii) \
o 1 2 3 4 5 6 7 8 9 10° . ; ; ; .
P, (GeVic) 6 -4 2 0 2 4 6
y
Good reproduction of pp -> J/y + x ! considerable enhancement of primordial J/y (in the

6 - initial state): large off-diagonal contributions
ubatech
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Remler formalism at work
Combining the rate definition + VN equation: 'V (t) = —iTr[p¥ [Hy, pn (t)]]

Generic case where  Hp = 3, K; + Ez‘>sz'j

1 3 1&2: c&c Strictly speaking, not QCD. Important process

®
®e ® ® partly missing : gluo-dissociation
PS 2 3,4, .. :light quarks

» Hy =Hy2+ Hy_2+ U + U

cC Internal Hamiltonian I

, A}
Light quarks [ Z371>2Vz'1 ZD’ZVEQ J !—Ieavy —'Iight
interaction

IY(t) = —iTr[p” [Hn, pn(t)]] = —iTr[pN (t)[ﬂqja HN]]

‘ Only U, and U, =>#0 (as [p¥, H1 2] = 0)
U : T A Sub-part of the VN equation, still impossible
[ (t) = —iTrlp KUl + UQ:PN(t)}’

to deal with exactly at the quantum n-body
level

26



Remler formalism at work

Passing to the Wigner representation:

Wi ({r}.{p}) = [ Udye'? (r — §|pn|r + §)

Direct space Wigner space....
Opn(t)/0t = —iX;|K;, pn(t)] OWn(t)/ot = (v 0-Wn(r,p,t))+
— i85k Vik, pn (1)) (BiziXnd(t —ti5(n))x

(WN(I', p,t+ C) - WN(I', p,t— 6)))

/

One to one correspondance

... treated at the semi-classical level :

Wigner distribution < {trajectories in phase space}

» [Ul + UQ, ﬁN (t)] can be modelized from the trajectories evolution in Wigner space

27



Remler formalism at work

The effective rate for quarkonia state creation (dissociation) in the medium is

LY (t) = —iTr[pY [0y + Us, pn (1))

r Working in the phase space through Wigner distribution
Wos = | dye™ (r — ) (¥r + §)

Quarkonia: Double Gaussian approximation W, : Semi-classical approach
2
2 52 Prel 3
WC\?I]Q (Trel’prel) —= C@Trelg X € o2 WN = th 5(371 — ﬂfzo(t))é(pz — p’LO(t))
Parameter: The Gaussian width ¢ ~ 0.35 fm ... but no explicit description of W,

52 required (as it appears in the trace)

[EVE"'V':r'l]‘I’QQ'.'Tj'=EQQ‘I’QQ — (r?) — wv

and (less trivial) : generalisation at finite 4-velocity u; fully relativistic... to warrant
orthogonality of states J /
gonality Te[W, Y WE'] =0

—
_ uoatedn 28
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Conclusions

Extension of the Remler formalism

Confining Q) forces inside the MC evolution ; large impact on the # of
close pairs... and correlated trajectories.

D. Lafferty and A. Rothkopf, . . .
PHYS. REV. D 101, 056010 (2020) Instantaneous # of Q-Qbar at (invariant) distance < 1fm
ReV [GeV]

PbPb /s=5.02 TeV |y| < 0.9

= no of interaction

10% |
5 [
2 1 W V vacuum c-quarks FO
" N e N
g 10 ~% \
n 5 V screened AN I
= S T . |
§ 2 H'\] \1‘ |
E . Y\ I
= L \ |
= 1iy/s=5.5TeV AR
i 51 No c-cbar™~ :
== vac ¢ interaction interaction :
r [fm] 2 | v=- sereened cf interaction :
l

0 2 4 6 8 TTTIT T 12
U time [fm]

Extra source of I" due to “local-T” basis evolution with time : I'lec

6 ~ Generalization to relativistic Wigner density (boosted quarkonium states)
ubatech 29



Preliminary results for J/\y production in Pb-Pb

Word of caution: Exploratory phase => not meant . 1 v . N
to have an exact comparison with exp. data P(t) = (o) + fto ['(t")dt
03t PbPb: Vs =5 TeV: 0-10% -
dN,./dy=22. K=1.5, Tges=co | Cumulated « production » (if
product all 1 no rate equation), indeed
- 0.2F ] oveshoots pp due to off-
! equiv pp 1 diagonal contributions

0.0

dNy/dy|,

product diag AN The denominator in the R,

prod + rate all

'- Profecti VACUUM J/ \ The full production (i.e. the
: rojection on : -
_ J v _ numenator in the R,,)
-01F prod + rate diag

t (fm/c)

First answer to puzzle found in Song et al: the primordial production is
killed rather fast by the « loss » rate.
gubot@ch
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Remler formalism for the QGP : last ingredient
Combining the rate definition + VN equation: 'V (t) = —iTr[p¥ [Hy, pn (t)]]
B  Hy=H+Hy o+ U +Us

CC Internal Hamiltonian /

/

In QGP, 2 body T-dependent effective potential => ....
LY(t) = —iTr[p" [Hy, py (D)) = —iTr{pn ()", H ]|

1 [p¥, H12(T)] =0

One only preserves the structure of the

= _@TT[ oY (T) [Ul + U2> PN( )H Remler « collisional rate » if one works in the
« local » basis p¥ (T) I!!
Accessible for T> T, .. .7 (=0.4 GeV for J/y)

Back to the rate : 'V (t) — %\Dt(t) — Ty [[’)gé dﬁgt(t)}

™ opL ~(T) .
B 10 = T [l T ) ] + v | P )

New contribution to the rate (so-called « local rate ») 31



The Q-Qbar dynamics... the CM strategy

Main objective : evaluate the propagation towards future of N Q-Qbar interacting

pairs
Strategy (adopted presently) : For each time step in the laboratory frame, pass to
the cm frame and perform the evolution in the cm frame (where the potential is

well defined)

t3
lab
future 3 Interaction with QGP
2
tlab Q
1
tlab

“Issue” : slicing the global time evolution (usual strategy in MC) is not 100%
compatible with passing to c.m. frame as 2 particles are usually not at the same
relative time in both frames (residual glitches <~ numerical noise)

guboi::nz-r;?.



The Q-Qbar dynamics... the CM strategy

*  “Minor problem” #1: Classical equations of motion are (in the CM):

Solution: Work in Hamilton — Jacobi coordinates or
impose the conserved quantities (L and Etot)

¥

Need to factorize the N-body problem as an {} of 2-
body problems for some evolution over time step dft,
each of them to be solved in the CM

Prel * 721‘61

|7

op1(dt)
cM1

gbof h
ubatec 33



The Q-Qbar dynamics... the CM strategy

*  “Minor problem” #1: Classical equations of motion are (in the CM):

Solution: Work in Hamilton — Jacobi coordinates or
impose the conserved quantities (L and Etot)

¥

Need to factorize the N-body problem as an {} of 2-
body problems for some evolution over time step dft,
each of them to be solved in the CM

Prel * 721‘61

|7ver |
Opo(dt)
CM2

6 bof h
U e 34



The Q-Qbar dynamics... the CM strategy

*  “Minor problem” #1: Classical equations of motion are (in the CM):

Prel * 7grel

Solution: Work in Hamilton — Jacobi coordinates or
impose the conserved quantities (L and Etot)

¥

Need to factorize the N-body problem as an {} of 2-
body problems for some evolution over time step dft,
each of them to be solved in the CM

0p = 0p1 + 0p2

|7

57 (dt) 59y (dt)

gubof@ ch
) 35
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Results : J/y v,

[30-50%] [30-50%]
04 PbPb /s=5.02 TeV |y| < 0.9 _ PbPb /s=5.02 TeV |y| < 0.9
0'[., [30 — 50%] central global shadowing 50% 0.6 [30 — 50%] central | | I | I
0.35 B ALICE —=— Coll: off: Pot: on - [ | ALICE 25 <y <4
0.3 F Coll: on; Pot: off 0.5 global shadowing 50%
0.95 i = Coll: on; Pot: on = all (Coll: on; Pot: on)
[) 2) I 0.4 | eeeeen diagonal
= 015 g
> 0.1 r
0.05 |
0.0 i |
0.05 |
-0.1 ‘
() 1 2 3 4 5 D 6

pr " [GeV]

* v, excess as compared to experimental data (late formation of the J/\y due to
binding potential under restoration)

* The « diagonal » contribution shows no difference wrt the full production,
what is a bit conter-intuitive

SUbOi.jii-
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