Charmonium modification in the quark-gluon plasma LHCP 2023 Large Hadron Collider Physics Conference Belgrade, 22-26 May 2023 Cynthia Hadjidakis IJCLab, Université Paris-Saclay, France on behalf of the ALICE, ATLAS, CMS and LHCb collaborations ### Outline - Probing the QGP with charmonia - Charmonium in heavy-ion collisions - Nuclear modification factor - Elliptic and triangular flow - J/ψ polarisation wrt Pb-Pb event plane - Coherent J/ψ photoproduction with nuclear overlap - Exotic charmonium $\chi_{c1}(3872)$ state Selection of final/new results from ALICE, ATLAS, CMS and LHCb #### Charmonia - Bound states of c and c - Stable and tightly bound - Produced in the initial hard partonic collisions in the early stage of the collisions ($\tau \simeq 1/m_c$): charmonia experience the whole space-time evolution of the formed medium in heavyion collisions Satz, J.Phys. G32 (2006) 3 | state | η_c | J/ψ | χ_{c0} | χ_{c1} | χ_{c2} | ψ' | |--------------------------|----------|----------|-------------|-------------|-------------|---------| | mass [GeV] | 2.98 | 3.10 | 3.42 | 3.51 | 3.56 | 3.69 | | $\Delta E \; [{ m GeV}]$ | 0.75 | 0.64 | 0.32 | 0.22 | 0.18 | 0.05 | ### Feed-down and non-prompt charmonia • Prompt J/ ψ = direct J/ ψ + J/ ψ from excited states (χ_c , $\psi(2S)$) prompt J/ ψ in pp at LHC ~ 80% direct J/ ψ + 14% χ_c \to J/ ψ + 6% ψ (2S) \to J/ ψ Lansberg Phys.Rep.889 (2020) 1 • Inclusive J/ ψ (ψ (2S)) = prompt J/ ψ (ψ (2S)) + J/ ψ (ψ (2S)) from b-hadron decays #### From dissociation... - At T >> 0, high density of colour charge in the medium induces Debye screening - At $T > T_D$, melting of quarkonia Matsui, Satz PLB178(1986) - Since charmonia (J/ ψ , ψ (2S), ...) have different binding energy - → sequential suppression of charmonium and bottomonium states Cynthia Hadjidakis → quarkonium as a QGP thermometer Karsch, Satz. Z.Phys. C51 (1991) 209 Rothkopf Phys. Rept. 858 (2020) 1 #### From dissociation... - At T >> 0, high density of colour charge in the medium induces Debye screening - At $T > T_D$, melting of quarkonia - ding energy - Since charmonia (J/ ψ , ψ (2S), ...) have different binding energy - → sequential suppression of charmonium and bottomonium states - → quarkonium as a QGP thermometer Karsch, Satz Z.Phys.C51 (1991) 209 Rothkopf Phys.Rept.858 (2020) 1 Matsui, Satz PLB178(1986) ### ... to regeneration... - Total charm cross-section increases with energy - c and c combination in the QGP or at the phase boundary - → regeneration of charmonia Braun-Munzinger, Stachel PLB490(2000) Thews et al. PRC62(2000) - production enhancement - → evidence of thermalization of charm quarks - regeneration delayed for loosely bound states (such as $\psi(2S)$) #### From dissociation... - At T >> 0, high density of colour charge in the medium induces Debye screening - At $T > T_D$, melting of quarkonia - Matsui, Satz. PLB178(1986) - Since charmonia (J/ ψ , ψ (2S), ...) have different binding energy - → sequential suppression of charmonium and bottomonium states - → quarkonium as a QGP thermometer Karsch, Satz. Z.Phys.C51 (1991) 209 Rothkopf Phys.Rept.858 (2020) 1 ### ... to regeneration... - Total charm cross-section increases with energy - c and c̄ combination in the QGP or at the phase boundary - → regeneration of charmonia - Braun-Munzinger, Stachel PLB490(2000) Thews et al. PRC62(2000) - production enhancement - → evidence of thermalization of charm quarks - regeneration delayed for loosely bound states (such as $\psi(2S)$) ### ... and energy loss - at large p_T , gluons can fragment into quarkonia \rightarrow gluon energy loss in the QGP: suppression similar for all particles *Arleo PRL119 (2017) 062302* ### Charmonium measurements in heavy-ions at the LHC ### LHC Pb-Pb collisions - $\sqrt{s_{NN}}$ = 2.76 (Run 1), **5.02 (Run 2)**, 5.36 (Run 3/4) TeV ### **ALICE** - midrapidity region with dielectron decay channel - forward-rapidity region with dimuons ### **ATLAS and CMS** - midrapidity region with dimuons ### **LHCb** - forward-rapidity region with dimuons Complementary measurements! ## Inclusive J/\pu production $$R_{AA} = \frac{d^2 N^{AA}/dp_T dy}{\langle N_{coll} \rangle d^2 N^{pp}/dp_T dy}$$ - $R_{AA} = 1$: no modification - $R_{AA} > 1$: enhancement - R_{AA} < 1: suppression - Less suppression at low p_T and at midrapidity: expected behaviour from J/ ψ recombination - Large suppression at large p_T with no rapidity dependence: interplay of dissociation and energy loss ### Model comparison #### Models: Du and Rapp, Nucl.Phys.A943 (2015) 147 Zhuang et al., PRC89 (2014) 054911 Andronic et al., PLB797 (2019) 134836 Arleo, PRL119 (2017) 062302 - Good agreement with models: - full p_T / y ranges: transport models (regeneration, dissociation) - low p_T : statistical hadronization model (SHMc regeneration) - high p_T : energy loss model - Large model uncertainty at low p_T from $\sigma_{c\bar{c}}$ in Pb-Pb: need to constrain/measure it! ### Model comparison - low p_T : statistical hadronization model (SHMc regeneration) - high p_T : energy loss model - Large model uncertainty at low p_T from $\sigma_{c\bar{c}}$ in Pb-Pb: need to constrain/measure it! - J/ψ / D ratio provides a tight constraint to models: SHMc model gives a good description of the centrality dependence of the ratio ALI-PUB-539133 Centrality ## Prompt J/w production Separation of prompt and non-prompt J/ψ with proper decay time/length $f_B = non-prompt / inclusive$ • Non-prompt J/ ψ fraction f_B : increasing with p_T and lower for most central collisions ## Prompt J/w production Separation of prompt and non-prompt J/ ψ with proper decay time/length f_B = non-prompt / inclusive - Non-prompt J/ ψ fraction f_B : increasing with p_T and lower for most central collisions - Complementary p_T ranges between ALICE, ATLAS and CMS for R_{AA} of prompt J/ψ : - good agreement in overlapping region - almost no suppression at low p_T as expected from regeneration mechanism - slight increase of R_{AA} with p_T as expected from energy loss mechanism #### Models: Vitev et al., PLB778 (2018) 384 Andronic et al., PLB797 (2019) 134836 ALI-PREL-50 ## Inclusive $\psi(2S)$ production Models: TAMU: Du and Rapp, SHMs: Andronic et al., PLB797 (2019) 134836 - $\psi(2S)$ more suppressed than the J/ ψ by a factor 2 (lower binding energy for $\psi(2S)$) - Similar dependence vs N_{part} and p_{T} for J/ ψ and $\psi(2S)$ with less suppression at low p_{T} as expected from regeneration mechanism - Strong $\psi(2S)$ suppression persists up to $p_T = 30 \text{ GeV/c}$ ## Elliptic and triangular flow of charmonia - Another observable: azimuthal distribution of particles wrt the reaction plane - Sensitive to initial collision asymmetry and event-by-event fluctuations - Path length dependence at high p_T: charmonia expected to be more suppressed in longer path directions Fourier distribution $$\frac{dN}{d\varphi} \propto 1 + 2\sum_{n=1}^{\infty} v_n \cos[n(\varphi - \Psi_n)].$$ # Elliptic and triangular flow of charmonia - Large J/ ψ v_2 up to $p_T = 50$ GeV/c: - low p_T : indication of collective flow behaviour of charm quarks - high p_T : path length dependence - First indication of prompt $\psi(2S)$ $v_2 >$ prompt J/ψ v_2 that may be linked to different hadronization time in the regeneration picture # Elliptic and triangular flow of charmonia - low p_T : indication of collective flow behaviour of charm quarks - high p_T : path length dependence - First indication of prompt $\psi(2S)$ $v_2 >$ prompt J/ψ v_2 that may be linked to differ hadronization time in the regeneration picture - Prompt J/ ψ , ψ (2S) v_3 consistent with zero at high p_T PbPb 1.6 nb⁻¹ (5.02 TeV) ## Polarisation wrt Pb-Pb event plane - Large magnetic field (B) and angular momentum (L) produced in the early stage of the QGP formation, perpendicular to the reaction plane \rightarrow can influence the polarisation of quarkonia - B ~ 10^{14} T with short live time (1 fm/c) Kharzeev et al., NPA803 (2008) - L highest in semi-central collisions, very large QGP velocity, with an effect on the system evolution up to freeze-out Becattini et al., PRC77 (2008) 024906 ## Polarisation wrt Pb-Pb event plane - Large magnetic field (\overrightarrow{B}) and angular momentum (\overrightarrow{L}) produced in the early stage of the QGP formation, perpendicular to the reaction plane \rightarrow can influence the polarisation of quarkonia - $B \sim 10^{14} \, \text{T}$ with short live time (1 fm/c) Kharzeev et al., NPA803 (2008) - L highest in semi-central collisions, very large QGP velocity, with an effect on the system evolution up to freeze-out *Becattini et al.*, *PRC77 (2008) 024906* • Polarisation of J/ ψ extracted along the axis perpendicular to the reaction plane $$W(\theta) \propto \frac{1}{3+\lambda_{\theta}} \left(1+\lambda_{\theta}\cos^2\theta\right)$$ ## Polarisation wrt Pb-Pb event plane - Large magnetic field (B) and angular momentum (L) produced in the early stage of the QGP formation, perpendicular to the reaction plane → can influence the polarisation of quarkonia - $B \sim 10^{14} \text{ T}$ with short live time (1 fm/c) Kharzeev et al., NPA803 (2008) - L highest in semi-central collisions, very large QGP velocity, with an effect on the system evolution up to freeze-out *Becattini et al.*, *PRC77 (2008) 024906* • Polarisation of J/ ψ extracted along the axis perpendicular to the reaction plane $$W(\theta) \propto \frac{1}{3+\lambda_{\theta}} \left(1+\lambda_{\theta}\cos^2\theta\right)$$ - First J/ ψ measurement wrt event plane: small but significant transverse polarisation at low $p_{\rm T}(3.9\sigma$ effect for semi-central events and $p_{\rm T}\sim 3~{\rm GeV/c})$ - Spin alignement observed for light vector mesons (K^{*0} and ϕ) at midrapidity and low p_T : common origin? *ALICE, PRL125 (2020) 012301* - Strong electromagnetic field from Pb nuclei: photoproduction of vector mesons with very low p_T (< 500 MeV) - Coherent production when the photon couples coherently with the target nucleus - Processes well studied at LHC in ultra-peripheral Pb-Pb collisions (UPC) when the incoming nuclei do not overlap: see talk by J.G. Contreras **Pb-Pb UPC** Pb-Pb with nuclear overlap - Coherent J/ ψ photoproduction also measured with nuclear overlap in peripheral collisions \rightarrow theoretical challenges: - does coherence condition survive for a broken nucleus? - do only spectator nucleons participate to coherence? - can this process be used as a probe of charmonium color screening in the QGP? Cross section measured at forward and midrapidity: more than 5σ significance down to semi-central (30-50%) collisions at forward rapidity - Cross section measured at forward and midrapidity: more than 5σ significance down to semi-central (30-50%) collisions at forward rapidity - No centrality dependence (once normalised by the centrality bin width ΔC) of the cross section: no evidence of variation from nuclear overlap or medium effects # Exotic charmonium $\chi_{c1}(3872)$ state • $\chi_{c1}(3872)$: D-D* molecule or tetraquark? See talk by A. Rakotozafindrabe • In heavy-ion, produced only at the hadronization stage? Regeneration for loosely bound states delayed with respect to compact tetraquarks Yield ratio: $$\rho \equiv \frac{N_{\text{corr}}^{\text{X}(3872) \to \text{J/}\psi\pi\pi}}{N_{\text{corr}}^{\psi(2\text{S}) \to \text{J/}\psi\pi\pi}}$$ - Evidence of $\chi_{c1}(3872)$ in Pb-Pb collisions - Yield ratio enhanced in Pb-Pb wrt pp ($\rho_{pp} \sim 0.1$) - Competing processes: regeneration vs suppression. These two processes can explain the $\chi_{c1}(3872)$ production dependence with system size. ### Summary and outlook - LHC experiments probe the quark gluon plasma formed in heavy-ion collisions with charmonium production - Charmonium production measurements in heavy-ion collisions - Nuclear modification factor, RAA - low p_T : J/ ψ and $\psi(2S)$ less suppressed at low p_T as expected from regeneration mechanism - mid and high p_T : large suppression as an interplay between dissociation and energy loss - $\psi(2S)$ 2x more suppressed than J/ψ - Elliptic and triangular flow - large $J/\psi v_2$ and indication of larger $\psi(2S) v_2$ - J/ψ , $\psi(2S)$ v_3 consistent with zero at high p_T - Polarisation wrt event plane - small but significant J/ ψ transverse polarisation at low p_T : effect from large B and L produced in the early stage? - Coherent J/ ψ γ -production: **no dependence with centrality** of the measured cross section within uncertainties - Evidence of exotic charmonium $\chi_{c1}(3872)$ in Pb-Pb with yield ratio to $\psi(2S)$ enhanced wrt pp - LHC experiment upgrades for Run3/4 and forthcoming Pb-Pb run in fall 2023! - New detectors and higher rate capabilities - Stay tuned! Cynthia Hadjidakis LHCP2023 May 2023 16 ### backup slides ## Inclusive J/w production May 2023 ## J/ψ polarisation in Pb-Pb collisions - Polarisation provides information complementary to the yield production - Important per se for detector effect correction - Polarisation measured in the helicity and collins-super frame • Polarisation compatible with zero (2 sigma from 0 at low p_T) and with ALICE pp measurements: no or small modification of the polarisation with the medium ## Jet fragmentation containing a prompt J/ψ 1/N dN/dz # $\chi_{c1}(3872)$ ## Quark-gluon plasma in heavy-ion collisions $\tau \simeq 20 \text{ fm/c}$ Kinetical freeze-out Chemical freeze-out $\tau \simeq 10 \text{ fm/c} \text{ T} < T_c$ Hadron gas $\tau \simeq 1 \text{ fm/c} \text{ T} > \text{T}_c$ Thermalized QGP $\tau \simeq 0$ Heavy-ion collision LHC size and time numbers $1 \text{ fm/c} \sim 3 \ 10^{-24} \text{ s}$ - Nuclear matter at high temperature and high density = Quark Gluon Plasma (QGP) - From lattice QCD: phase transition near $T_c = 170 \text{ MeV}$ ($\varepsilon_c = 1 \text{ GeV/fm}^3$) - At LHC energies: most particles produced during the collisions \rightarrow very low net baryon density - Heavy ion collision experiments: characterize the QGP phase - At large energy: large, hot, dense, long life-time plasma ## Collision geometry: few definitions #### Centrality of the collisions: overlap of two nuclei semi-central collision central collision | | $N_{part} = 2$ | $N_{coll} = 1$ | |-------------|------------------|-------------------| | 00 000 | $N_{part} = 5$ | $N_{coll} = 6$ | | Pb-Pb cent. | $N_{part} = 360$ | $N_{coll} = 1500$ | | p-Pb cent. | $N_{part} = 16$ | $N_{coll} = 15$ | Impact parameter of the collision: b Number of participants nucleons: Npart Number of binary collisions: N_{coll} ## Collision geometry: few definitions #### Centrality of the collisions: overlap of two nuclei semi-central collision $N_{part} = 2$ $N_{coll} = 1$ $N_{part} = 5$ $N_{coll} = 6$ Pb-Pb cent. $N_{part} = 360$ $N_{coll} = 1500$ $N_{part} = 16$ $N_{coll} = 15$ p-Pb cent. Impact parameter of the collision: b Number of participants nucleons: Npart Number of binary collisions: N_{coll} #### **Event centrality determination** - Cannot measure b, N_{part}, N_{coll} directly - Multiplicity measurements with forward or central detectors (charged particles multiplicity - π , K, p... - -, spectator neutrons, ...) - Use Glauber model to map the measured multiplicities in A-A collisions to b, N_{part} and N_{coll} ## Collision geometry: few definitions #### Centrality of the collisions: overlap of two nuclei semi-central collision | | $N_{part} = 2$ | $N_{coll} = 1$ | |-----|----------------|----------------| | 000 | $N_{part} = 5$ | $N_{coll} = 6$ | Pb-Pb cent. $N_{part} = 360$ $N_{coll} = 1500$ p-Pb cent. $N_{part} = 16$ $N_{coll} = 15$ Impact parameter of the collision: b Number of participants nucleons: N_{part} Number of binary collisions: N_{coll} #### **Event centrality determination** - Cannot measure b, N_{part}, N_{coll} directly - Multiplicity measurements with forward or central detectors (charged particles multiplicity π , K, p... - -, spectator neutrons, ...) - Use Glauber model to map the measured multiplicities in A-A collisions to b, N_{part} and N_{coll}