

RECENT OPEN HEAVY FLAVOR RESULTS

M. Csanád (Eötvös U) for ALICE, ATLAS, CMS, LHCb

Baryon-meson ratios Nuclear modification Flow

HEAVY FLAVOR PROBES TIME EVOLUTION

- Special role of heavy flavor: negligible thermal production (mass > temperature), Brownian motion
- From production at less than 0.1 fm/c until QGP lifetime: experience whole evolution
- Initial production:
- pQCD, shadowing, pre-equilibrium effects, glasma, electromagnetic field, vorticity
- Dynamics in QGP
 - Heavy quark interaction, transport, thermalization
- Hadronization
 - Coalescence, fragmentation, rescattering
- Main heavy flavor observables:
 - Baryon/meson ratios: hadronization
- R_{AA} : interaction, energy loss
- v_2 : coupling, thermalization

PROMPT Λ_C^+/D^0 RATIO AT 5.02 TEV

- First measurement of prompt Λ_C^+/D^0 at forward rapidities in PbPb [LHCb, arXiv:2210.06939]
 - ullet Enhancement at intermediate p_T , PYTHIA8+CR compatible, Statistical hadronization (RQM+Frag) above data
- Enhanced ratio in PbPb compared to pp at intermediate p_T [ALICE, arXiv:2112.08156]
- Possibly due to interplay of coalescence and radial flow, or hadronic rescattering for PbPb
- $(\Lambda_c^+ + \Lambda_c^-)/(D^0 + \overline{D^0})$ consistent in pp and PbPb [CMS-PAS-HIN-21-004]
 - No significant contribution from coalescence?

M. CSANÁD @ LHCP

PROMPT AND NON-PROMPT D_S AND D⁰ R_{AA} IN PBPB

- Non-prompt D_s and D⁰ production measured in PbPb by ALICE
- Compared to prompt results and model calculations
- Larger non-prompt R_{AA} than prompt R_{AA}
- For both non-prompt D_s and D^0
- Larger impact of dead-cone effect for beauty
- Hints of larger D_s/D_0 yields in AA than in pp
 - Coalescence production in a strangeness-rich environment
- ALICE paper: arXiv:2204.10386
- Further results in recent ALICE publications
- JHEP 12 (2022) 126, JHEP 01 (2022) 174, etc.

CHARM QUARK HADRONIZATION IN PPB AT 8.16 TEV

- First conclusive measurement of Λ_c/D^0 vs multiplicity in pPb (note similar ALICE preliminary for QM22)
- Different trend compared to strange sector: smaller dependence
- Extending the system, p_T , and centrality dependence
- Λ_c/D^0 in pPb and MB PbPb consistent at intermediate momenta
- High momenta: MB and central PbPb approach the ratio from e^+e^- : no coalescence

PROMPT D⁰ PRODUCTION IN PPB AT 8.16 TEV

- Forward: suppression consistent with 5.02 TeV result, with nPDF and CGC
- ullet Backward: data partly below nPDF at high p_T
- Room for additional effects at backward rapidity

LHCb paper: arXiv:2205.03936

D⁰-TAGGED JET R_{AA} IN PBPB

- Nuclear modification of D⁰-tagged jets in PbPb measured by ALICE
- Compared with single-particle D⁰ and inclusive-jets
- Larger R_{AA} for D⁰-jets than single-particle D⁰
 - ullet in common p_T range
 - hadron-to-parton and jet-to-parton p_T scales differ
- Larger R_{AA} for D^0 -jets than inclusive jets
 - Here quark/gluon jet ratio and parton fragmentation differ
- Results: ALI-PREL-506534

B-JETS IN PBPB COLLISIONS

- B-jets: different from inclusive jets due to quark mass
 - Medium-induced gluon radiation suppressed; lose smaller amount energy than gluon jets due to color factor
- B-jet ID: jets with muonic b-decays; template fit of muon momentum relative to jet axis
- ${f R}_{AA}$ decreased for more central events; larger for b-jets than for light-jets
- Reason: different gluon fraction b-mass subdominant at high p_T

B-JET SHAPES

ullet Jet shape: Measure of charged particle p_T distribution w.r.t. jet axis:

$$P(\Delta r) = \frac{1}{\Delta r_{\rm b} - \Delta r_{\rm a}} \frac{1}{N_{\rm jet}} \Sigma_{\rm jets} \Sigma_{\rm trk \in (\Delta r_{\rm a}, \Delta r_{\rm b})} p_{\rm T}^{\rm trk}$$

$$\rho(\Delta r) = \frac{P(\Delta r)}{\sum_{\text{jets}} \sum_{\text{trk} \in (\Delta r < 1)} p_{\text{T}}^{\text{trk}}}$$

- Depletion of p_T at small Δr from jet axis
 - Already present in pp, consistent with a dead-cone
- Quantitative measurement of dead-cone effect for b-jets?
- QGP modifies energy flow around b-jets
- ullet Transfer of p_T from small to large radial distances?
- CMS paper: arXiv:2210.08547

BOTTOM QUARK R_{AA} IN PBPB

- Electrons from b-decays measured by ALICE [arXiv:2211.13985]
- Consistent with models of b-quark energy loss
- Similar R_{AA} of electrons from bottom and charm
- C.f.: mass ordering or differences seen previously by PHENIX [2203.17058], STAR [2111.14615] and ATLAS [2109.00411]

EXPLORE ENERGY LOSS AND QGP EXPANSION: RAA AND V2

Constraining spatial diffusion coefficient

- Different transport models for E-loss & hadronization
- Simultaneous description: $1.5 < 2\pi D_s T_c < 4.5$
- HF probes becoming powerful tomography tools
- ullet Measurement of R_{AA} and v_2 for c and b
 - Mass splitting of v_2 at low p_T , convergence at high p_T

• Charm D_s: 2.23 (bottom: 2.79); in line with ALICE—

PLB 829 (2022) 137077

NON-PROMPT D⁰ ELLIPTIC FLOW IN PBPB

- Non-prompt $D^0 v_2$ measured in 30-50% PbPb by ALICE, compared with prompt D^0
- Non-zero non-prompt flow observed, although smaller than prompt and larger uncertainties
- LIDO model compatible with current and earlier data on $b(\to c) \to e$

PROMPT AND NON-PROMPT HEAVY FLAVOR V₂ AND V₃

- Prompt and non-prompt D⁰: DCA separation
- Charm v_2 and v_3 : affected by flow and energy loss characteristics
- Bottom: less flow, more resistant to collective effects, but still path-length dependent energy loss

13/15

14/15

HEAVY FLAVOR FLOW HIERARCHY

Bridging heavy flavor flow measurements in small and large systems

Clear mass hierarchy: heavier particles exhibit less flow in PbPb and in high-multiplicity pPb as well

• h^{\pm} , D^{0} , J/ψ , $b \to D^{0}$, $b \to J/\psi$, $\Upsilon(1S)$

Question: open/closed b flow as well?

SUMMARY

- Many HF observables measured at LHC
- Baryon/meson ratios (Λ_c/D^0)
 - Role of coalescence
- Suppression (R_{AA})
- D- and b-tagged jets measured
- Understanding energy loss and fragmentation
- Azimuthal anisotropy
- Non-prompt D⁰ v₂ observed
- Heavy flavor v_2 and v_3 : even for bottom
- Clear heavy flavor flow hierarchy established
- THANK YOU FOR YOUR ATTENTION!

BACKUP SLIDES

PROMPT Λ_C^+/D^0 RATIO AT 5.02 TEV WITH LHCB

- First measurement of prompt Λ_C^+/D^0 at forward rapidities in PbPb [arXiv:2210.06939]
- Flat ratio versus multiplicity and rapidity, enhancement at intermediate pT
- ullet Pythia8 + color reconnection: compatible with the data within 3σ
- Statistical Hadronization Model (RQM+Frag): above the data
- Need better understanding of charm hadronization

Λ_C^+/D^0 RATIO MEASURED BY ALICE

- Λ_C^+/D^0 ratio (and individual yields) measured in PbPb [ALICE, arXiv:2112.08156]
- ullet Enhanced ratio in PbPb compared to pp at intermediate p_T
- Although integrated ratios compatible in PbPb and pp
- Possibly due to interplay of coalescence and radial flow, or hadronic rescattering for PbPb
- Models capture the trend of the data
 - Statistical hadronization models extended to charm hadron production
- Models including hadronization via coalescence

CHARM QUARK HADRONIZATION IN PP AND AA WITH CMS

- PYTHIA+CR describes $(\Lambda_c^+ + \Lambda_c^-)/(D^0 + \overline{D^0})$ at $p_T < 10$ GeV in pp, similar to models
- Containing decays of excited charm baryons; involving coalescence and fragmentation
- ullet New results extend the p_T and centrality reach in PbPb
 - Ratio in pp and PbPb consistent: no significant contribution from coalescence

19/15

HEAVY FLAVOR HADRONIZATION IN PP WITH ALICE

- Charm baryon/meson ratios partially explained by models with modified hadronization mechanism
- ullet Λ_C^+/D^0 : Pythia Monash underestimates results, models with baryon enhancement work qualitatively
- Ingredients: color reconnection, feed-down from unobserved charm baryons or coalescence (recombination)

ullet D non-prompt fraction $f_{
m non-prompt}$: slight increase with p_T , no multiplicity dependence

Important test for hadronization models in HF sectors

PYTHIA 8

CHARM ELLIPTIC FLOW IN AA WITH CUMULANTS

- ullet Prompt D^0 elliptic flow measured with 2- and 4-particle cumulants: $v_2\{2\}$ and $v_2\{4\}$
 - ullet Two-step fit process: mass spectrum and cumulant fit in p_T intervals and centrality ranges
- Similar cumulant ratio as charged particles, pointing to similar origin: event-by-event fluctuations
- CMS paper: Phys. Rev. Lett. 129 (2022) 022001

