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Inclusive jet suppression
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Large suppression of jets seen in Pb+Pb collisions with respect
to p+p collisions quantified by the nuclear modification factor, RAA.

This phenomenon is called jet quenching.

If there was no modification of the jet yield in heavy-ion collision,
then RAA = 1.
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Inclusive jet suppression
PLB 790 (2019) 108

Jet quenching – very significant, present also at the TeV scale! 

RAA of Z and W is unity (modulo isospin) => jet quenching is due to the 
interaction of parton shower with deconfined color charges.

peripheral,
e.g. 60-80%

central,
e.g. 0-10%
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Looking at details
 from the latest measurements...
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Radial dependence of inclusive jet 
suppression

arXiv:2303.00592

Ratio of jet cross-sections (or 
RAA’s) for jets with different radii.

Helps finding impact of competing 
effects: 

– recovering of in-medium 
radiation (=> increase)

– larger-R jets at given pT are 
broader => more quenched 
(=> decrease)

– vacuum effect (decrease)

 Measured also for R=0.6 jets.
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Dijet studies

arXiv:2205.00682 

Measuring dijets allows to also study the path-length dependence and 
the role of fluctuations.

Dijet energy loss quantified in terms of xJ = pT,sub-leading / pT,leading .

Significant dijet imbalance 
seen in central heavy ion 
collisions. 
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Dijet studies

Measuring dijets allows to also study the path-length dependence and 
the role of fluctuations.

Dijet energy loss quantified in terms of xJ = pT,sub-leading / pT,leading .

Significant dijet imbalance 
seen in central heavy ion 
collisions.

This imbalance is shown to 
be due to a suppression of 
balanced dijet topologies 
rather than enhancement in 
imbalanced topologies. 

arXiv:2205.00682 

Per-event 
instead of  dijet 
normalization
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Dijet studies

Measuring dijets allows to also study the path-length dependence and 
the role of fluctuations.

Dijet energy loss quantified in terms of xJ = pT,sub-leading / pT,leading .

Significant dijet imbalance 
seen in central heavy ion 
collisions.

Measured in Xe+Xe 
collisions: system size 
dependence of jet quenching:

– Similar level of jet 
suppression after taking 
into account differences 
in geometry and √sNN.

arXiv:2302.03967 
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Jet shapes in dijet system

Jet shape = flow 
of pT around the 
jet axis

JHEP 05 (2021) 116
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Jet shapes in dijet system

Jet shape = flow 
of pT around the 
jet axis.

JHEP 05 (2021) 116

More energy produced outside of jets 
in Pb+Pb compared to pp.

Enhancement for leading jets is larger 
in more balanced dijet systems.

Consistent with geometric origin of 
dijet imbalance (leading jet is 
suppressed less for imbalanced dijets).

Consistent with the xJ measurement.
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Azimuthal anisotropy
 in dijet system

Dijet v2 using jet-hadron correlations – resilient against long range
hydro-like correlations.

Dijet v2>0, but dijet v3=0 and v4=0.

Quantifies path-length dependence of the energy loss.

Implies no significant impact of initial state geometry and medium 
density fluctuations.

arXiv:2210.08325
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Azimuthal anisotropy
 for inclusive jets

PRC 105 (2022) 064903

Inclusive jet v2>0 and v3>0, v4=0.

Direct comparison with CMS difficult (different binning choices).
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Suppression in g-jet system

Left: – Inclusive jets dominated by gluon-initiated jets.
– g-jet system dominated by quark-initiated jets
   => less suppression as expected.

arXiv:2303.10090 
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Suppression in g-jet system

Left: – Inclusive jets dominated by gluon-initiated jets.
– g-jet system dominated by quark-initiated jets
   => less suppression as expected.

Right: g-jet to inclusive jet ratio.
Should help constraining the impact of color charge as well as impact 
of so called selection bias (g is not quenched).

arXiv:2303.10090 
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Jet sub-structure

Part of the parton shower may remain unresolved due to the color 
coherence. Early, hard splittings in the parton shower are likely not 
altered by the medium => substructure measurements.

hardest resolved 
next-to-hardest

soft fragments Here jet radiates 
as a single color 

charge

    PRL 106 (2011) 122002
    PLB 707 (2012) 156
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Jet structure: R=0.2, ds/dq

arXiv:2204.10246 

Groomed jet radius for 0.2 
jets with soft-drop.

   Rg ~ qg ~ DR12 º q
Significant narrowing 
observed in Pb+Pb. 

Two possible sources:

– color coherence

– quenching induced 
change in q/g fraction

Also measured splitting 
scale or jet mass. 
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Jet structure: R=1.0, RAA(q)

arXiv:2301.05606

R=1.0 clustered from R=0.2 
jets with pT>35 GeV.

RAA measured differentially 
in substructure observable. 

R=1.0 jets with single sub-
jet suppressed significantly 
less (consistent with color 
coherence picture).
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arXiv:2211.11470

Detailed measurement 
for DR12<0.4 using 

tracking information
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Jet structure and large-R jets

Suppression ordering: reclustered R=1.0 w/ multiple subjets >
>  inclusive reclustered R=1.0 >
>  R=0.4 > R=0.2 >
>  reclustered R=1.0 w/ single subjets

arXiv:2301.05606 
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Summary

Inclusive jets are suppressed by a factor of two at the TeV scale. 

In the dijet system, production of balanced jets is suppressed. 
Enhancement of soft particle production is larger for leading jets from 
balanced dijets => Consistent picture of geometry-driven energy loss 
of dijets. 

Dijet and inclusive jet v2, v3, v4 – understanding of path-length 
dependence and role of initial state and fluctuations. 

Significantly smaller suppression of jets in gamma-jet system – 
expected from the flavor dependence of jet quenching.

Large-R jets with single sub-jet suppressed significantly less then jets 
with more complex topologies as expected at presence of color 
coherence effects.

Difference between suppression of jets with different R quantified.
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Back-up slides
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Comparing to EW bosons

PLB 802 (2020) 
135262

RAA of Z and W is unity (modulo isospin) => we understand
the geometry of Pb+Pb collision.

Some small deviation from unity => information about high-energy nuclear 
structure: nuclear-PDFs, neutron skin-effect, …

Jet quenching – result of final state interaction of parton shower with 
deconfined medium.
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Dijet studies

Measuring dijets allows to also study the path-length dependence and 
the role of fluctuations.

Dijet energy loss quantified in terms of xJ = pT,leading / pT,subleading .

Significant dijet imbalance 
seen in central heavy ion 
collisions.

Comparison to one of 
radiative energy loss models 
=> can learn more details

arXiv:2205.00682 
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Dijet studies
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Suppression in gamma-jet system

Right: 

– Inclusive jets dominated by gluon-initiated jets.

– Photon-jet system dominated by quark-initiated jets => less 
suppression as expected.

Left: the difference cannot be explained as a consequence of isospin 
and nuclear-PDFs effect.

arXiv:2303.10090 



27

Suppression in g-jet system

Inclusive jets: good agreement between various models and the data.
 g-jets: in general, smaller suppression seen in the data than in theory 
predictions.

Should help constraining the impact of color charge as well as impact 
of so called selection bias (jets in dijets are quenched while gamma is 
not).

arXiv:2303.10090 
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Jet structure and R=0.4 jets

Similar measurement done also for 
R=0.4 jets with soft-drop. 

Suppression measured differentially in 
rg ~ ΔR12

A factor of two difference between 
different rg configurations.

Suppression larger for jets with 
larger angle as expected from the 
coherence picture. 

arXiv:2211.11470
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