

Inclusive jets and dijet suppression in heavy ion collisions

Martin Spousta on behalf of ALICE, ATLAS and CMS Collaborations

Charles University Prague

Large Hadron Collider Physics Conference Belgrade, 22-26 May 2023

Inclusive jet suppression

- Large **suppression of jets** seen in Pb+Pb collisions with respect to p+p collisions quantified by the nuclear modification factor, R_{AA} .
- This phenomenon is called jet quenching.
- If there was no modification of the jet yield in heavy-ion collision, then $R_{AA} = 1$.

Inclusive jet suppression

- Jet quenching very significant, present also at the TeV scale!
- • R_{AA} of Z and W is unity (modulo isospin) => jet quenching is due to the interaction of parton shower with deconfined color charges.

Looking at details from the latest measurements...

Radial dependence of inclusive jet suppression

- Ratio of jet cross-sections (or R_{AA} 's) for jets with different radii.
- Helps finding impact of competing effects:
 - recovering of in-medium radiation (=> increase)
 - larger-R jets at given p_T are
 broader => more quenched
 (=> decrease)
 - vacuum effect (decrease)
- Measured also for *R*=0.6 jets.

Radial dependence of inclusive jet suppression

- Ratio of jet cross-sections (or R_{AA} 's) for jets with different radii.
- Helps finding impact of competing effects:
 - recovering of in-medium radiation (=> increase)
 - larger-R jets at given p_T are
 broader => more quenched
 (=> decrease)
 - vacuum effect (decrease)
- Measured also for R=0.6 jets.

- Measuring dijets allows to also study the path-length dependence and the role of fluctuations.
- Dijet energy loss quantified in terms of $x_J = p_{T,sub-leading} / p_{T,leading}$.

 Significant dijet imbalance seen in central heavy ion collisions.

- Measuring dijets allows to also study the path-length dependence and the role of fluctuations.
- Dijet energy loss quantified in terms of $x_J = p_{T,sub-leading} / p_{T,leading}$.

- Significant dijet imbalance seen in central heavy ion collisions.
- This imbalance is shown to be due to a suppression of balanced dijet topologies rather than enhancement in imbalanced topologies.

arXiv:2205.00682

- Measuring dijets allows to also study the path-length dependence and the role of fluctuations.
- Dijet energy loss quantified in terms of $x_J = p_{T,sub-leading} / p_{T,leading}$.

- Significant dijet imbalance seen in central heavy ion collisions.
- Measured in Xe+Xe collisions: system size dependence of jet quenching:
 - Similar level of jet suppression after taking into account differences in geometry and √s_{NN}.

Jet shapes in dijet system

• Jet shape = flow of p_T around the jet axis

Jet shapes in dijet system

CMS

Leading jet shape ratios

- Jet shape = flow of p_T around the jet axis.
- More energy produced outside of jets in Pb+Pb compared to pp.
- Enhancement for leading jets is larger in more balanced dijet systems.
- Consistent with geometric origin of dijet imbalance (leading jet is suppressed less for imbalanced dijets).
- Consistent with the $x_{\rm J}$ measurement.

Azimuthal anisotropy in dijet system

- Dijet v₂ using jet-hadron correlations resilient against long range hydro-like correlations.
- Dijet $v_2>0$, but dijet $v_3=0$ and $v_4=0$.
- Quantifies path-length dependence of the energy loss.
- Implies **no significant impact** of initial state geometry and medium density fluctuations.

Azimuthal anisotropy for inclusive jets_

PRC 105 (2022) 064903

- Inclusive jet $v_2>0$ and $v_3>0$, $v_4=0$.
- Direct comparison with CMS difficult (different binning choices).

Suppression in γ -jet system

- Left:
- Inclusive jets dominated by gluon-initiated jets.
- $-\gamma$ -jet system dominated by **quark-initiated jets**
 - => **less suppression** as expected.

Suppression in γ -jet system

- Left: Inclusive jets dominated by gluon-initiated jets.
 - $-\gamma$ -jet system dominated by **quark-initiated jets**
 - => **less suppression** as expected.
- Right: γ -jet to inclusive jet ratio.
- Should help constraining the **impact of color charge** as well as impact of so called **selection bias** (γ is not quenched).

Jet sub-structure

Part of the parton shower may remain unresolved due to the color coherence. Early, hard splittings in the parton shower are likely **not** altered by the medium => substructure measurements.

Jet structure: R=0.2, $d\sigma/d\theta$

• Groomed jet radius for 0.2 jets with soft-drop.

$$R_{\rm g} \sim \theta_{\rm g} \sim \Delta R_{12} \equiv \theta$$

- Significant narrowing observed in Pb+Pb.
- Two possible sources:
 - color coherence
 - quenching induced change in q/g fraction
- Also measured splitting scale or jet mass.

arXiv:2204.10246

Jet structure: R=1.0, $R_{AA}(\theta)$

- •R=1.0 clustered from R=0.2 jets with p_T >35 GeV.
- R_{AA} measured differentially in substructure observable.
- R=1.0 jets with single subjet suppressed significantly less (consistent with color coherence picture).

Jet structure: R=1.0, $R_{AA}(\theta)$

- •R=1.0 clustered from R=0.2 jets with p_T >35 GeV.
- R_{AA} measured differentially in substructure observable.
- R=1.0 jets with single subjet suppressed significantly less (consistent with color coherence picture).

Detailed measurement for ΔR_{12} < 0.4 using tracking information

arXiv:2301.05606

arXiv:2211.11470

Jet structure and large-R jets

Suppression **ordering**: reclustered *R*=1.0 w/ multiple subjets >

- > inclusive reclustered R=1.0 >
- > R=0.4 > R=0.2 >
- > reclustered *R*=1.0 w/ single subjets

Summary

- Inclusive jets are suppressed by a factor of two at the TeV scale.
- In the dijet system, production of balanced jets is suppressed.
 Enhancement of soft particle production is larger for leading jets from balanced dijets => Consistent picture of geometry-driven energy loss of dijets.
- Dijet and inclusive jet v_2 , v_3 , v_4 understanding of path-length dependence and **role of initial state and fluctuations**.
- Significantly smaller suppression of jets in gamma-jet system expected from the **flavor dependence** of jet quenching.
- Large-R jets with single sub-jet suppressed significantly less then jets with more complex topologies as expected at presence of **color coherence effects**.
- Difference between suppression of jets with **different** *R* quantified.

Back-up slides

Comparing to EW bosons

- • R_{AA} of Z and W is unity (modulo isospin) => we understand the geometry of Pb+Pb collision.
- Some small deviation from unity => information about high-energy nuclear structure: **nuclear-PDFs**, **neutron skin-effect**, ...
- Jet quenching result of **final state interaction** of parton shower with deconfined medium.

- Measuring dijets allows to also study the path-length dependence and the role of fluctuations.
- Dijet energy loss quantified in terms of $x_J = p_{T,leading} / p_{T,subleading}$.

- Significant dijet imbalance seen in central heavy ion collisions.
- Comparison to one of radiative energy loss models
 can learn more details

arXiv:2205.00682

$$f_{\text{Fourier}}(\Delta \varphi) = A \left(1 + \sum_{n=1}^{4} 2V_{n\Delta} \cos(n\Delta \varphi) \right)$$
 $V_{n\Delta}^{\text{dihadron}} = v_n^{\text{trigger}} v_n^{\text{associated}}$

Suppression in gamma-jet system

- Right:
 - Inclusive jets dominated by gluon-initiated jets.
 - Photon-jet system dominated by quark-initiated jets => less suppression as expected.
- Left: the difference cannot be explained as a consequence of isospin and nuclear-PDFs effect.

Suppression in γ-jet system

- Inclusive jets: good agreement between various models and the data.
- γ -jets: in general, **smaller suppression seen in the data** than in theory predictions.
- Should help constraining the **impact of color charge** as well as impact of so called **selection bias** (jets in dijets are quenched while gamma is not).

Jet structure and R=0.4 jets

arXiv:2211.11470

- Similar measurement done also for R=0.4 jets with soft-drop.
- Suppression measured differentially in $r_g \sim \Delta R_{12}$
- A **factor of two** difference between different r_g configurations.
- Suppression larger for jets with larger angle as expected from the coherence picture.