Light (anti)nuclei production in small systems with ALICE (Run 1+2) # Rutuparna Rath INFN Bologna, Italy [On behalf of the ALICE Collaboration] ## Light (anti)nuclei in high-energy collisions - LHC provides optimal conditions for studying the antinuclei formation as it produces an equal amount of matter and antimatter - We consider **light** nuclei if $Z \le 2$ $$e.\,g.\,\,p+n\,\,\rightarrow d\,\,\&\,\,\overline{p}+\overline{n}\,\,\rightarrow\,\overline{d}$$ The study of light (anti)nuclei **formation** in **high-energy collisions** is fundamental for several reasons: - Astrophysics applications: Measurements in the lab provide fundamental input to constrain cosmic ray background in indirect dark matter searches - Their production mechanism needs to be understood using models like - Statistical thermal models - Coalescence Models #### **Thermal Model** - Hadrons emitted from the interaction region at statistical equilibrium when fireball reaches limiting temperature - Particle yield exhibits an exponential dependency \rightarrow yield \propto exp(-m/ T_{chem}) - Nuclei abundance is highly sensitive to the selection of T_{chem} , due to their large mass m. Andronic, A., Braun-Munzinger, P., Redlich, K. et al. Decoding the phase structure of QCD via particle production at high energy. Nature 561, 321–330 (2018) Particle yields of light-flavour hadrons described over 9 orders of magnitude with a common $T_{chem} \approx 156 \; MeV$ #### **Coalescence model** [1] PRC 99 (2019) 024001 [2] PRL 123 (2019) 112002 [3] PRC 96 (2017) 064613 ^[1]pp, ^[2]p-Pb: $r_0 = 1-1.5$ fm Nuclei formation probability is given by **overlap** of the nucleus Wigner density with the **phase-space distribution** of the nucleons \rightarrow Probability is related to the coalescence parameter B_A Coalescence parameter B_A for a nucleus "i" with "A" nucleons is defined as $$E_i \frac{\mathrm{d}^3 N_i}{\mathrm{d}p_i^3} = B_A \left(E_\mathrm{p} \frac{\mathrm{d}^3 N_\mathrm{p}}{\mathrm{d}p_\mathrm{p}^3} \right)^A \xrightarrow{\text{deuterons}} B_2 = \frac{E_\mathrm{d} \frac{\mathrm{d}^3 N_\mathrm{d}}{\mathrm{d}p_\mathrm{p}^3}}{\left(E_\mathrm{p} \frac{\mathrm{d}^3 N_\mathrm{p}}{\mathrm{d}p_\mathrm{p}^3} \right)^2}$$ #### Larger $B_A \Leftrightarrow$ Larger coalescence probability In state-of-the-art models, B_A depends on A, p_T , size of nucleus and particle source Small system Small distance in space (Only momentum correlations matter) \Leftrightarrow expect large B_A [3] Pb-Pb: $r_0 = 3-6$ fm Large system Large distance in space (Both momentum and space correlations matter) \Leftrightarrow expect smaller B_A #### The ALICE Detector #### ITS ($|\eta| < 0.9$) Trigger, vertex, tracking, PID (dE/dx) #### **TPC** ($|\eta| < 0.9$) Tracking and vertexing, PID (dE/dx) $\sigma_{dE/dx} \sim 5.5\%$ for pp $\sigma_{dE/dx} \sim 7\%$ for Pb–Pb #### **TOF** ($|\eta| < 0.9$) Multi-gap Resistive Plate Chambers Time resolution ($\sigma_{TOF} \sim 80~ps$) , PID (time-of-flight) #### **V0** (A&C) trigger, multiplicity estimators (Minimum Bias: 0 - 100%, High Multiplicity: 0 - 0.1%) #### **ALICE** is uniquely equipped for particle identification (PID) The most suitable detector for (anti)nuclei production study over a wide range of system sizes and energy ## Light (anti)nuclei production in pp and p-Pb collisions - $p_{\rm T}$ spectra fitted with Lévy-Tsallis function \rightarrow Extrapolation to unmeasured regions - Similar behaviour was observed in pp and p—Pb systems such as hardening with increasing centrality \rightarrow as seen for other light-flavour hadrons - Light (anti)nuclei up to ³He have been measured in small systems #### Ratio to protons with model comparison - d/p ratio evolves **smoothly** with **multiplicity** → dependence on the **system size** - For d/p ratio both models describe the data: - ¹CSM (Canonical Statistical Model): canonical suppression - Coalescence model: interplay between source size and nuclear size - ³He/p evolves smoothly with multiplicity - Coalescence seems to describe better the data as compared to CSM - **d/p** increases by a factor of 4 from pp to mid-central Pb-Pb collision, but a hint of a small decrease in central **Pb-Pb** collision (not significant within the uncertainties) $^{(3)}$ He + $^{(3)}$ He + $^{(3)}$ He + #### Coalescence parameter B_A - Continuous evolution of B_2 with multiplicity \rightarrow Smooth transition from small to large system size - Similar conclusions apply also to B_3 - Advanced coalescence models taking into account the size of the nucleus and of the emitting source predict a similar trend The evolution with multiplicity is explained as an increase in the source size 'R' in coalescence models (e.g. Scheibl, Heinz PRC 59 (1999) 1585, F. Bellini and A. P. Kalweit, Phys. Rev. C 99, 054905) #### In-jet and underlying event - The study in small collision systems such as pp and p-Pb can also be explored using the underlying event (UE) activity - The coalescence mechanism can be tested by comparing the deuteron production in jets, where nucleons are closer as compared to the underlying event - Leading particle $(p_T^{lead} > 5 \text{ GeV/}c)$ used as a proxy for the jet axis - 3 regions in the transverse plane wrt leading track: - ☐ Toward: Contains Jet and Underlying Event (UE) - ☐ Transverse: Dominated by the UE - ☐ Away: Contains recoil jet and UE - Jet = Toward Transverse (Jet+UE UE) Martin, T., Skands, P. & Farrington, S.: Eur. Phys. J. C76, 299 (2016) ## In-jet and underlying event: (Anti)deuteron spectra [arXiv:2211.15204v1] Deuteron production in events with $p_T^{\text{lead}} > 5 \text{ GeV/}c$ Jet = Toward - Transverse (Jet+UE - UE) - The fraction of deuterons produced in the jet is $\sim 10\%$ wrt UE in pp - The majority of the deuterons are produced in the underlying event pp @ 13 TeV # In-jet and underlying event: (Anti)deuteron spectra Deuteron production in events with $p_T^{\text{lead}} > 5 \text{ GeV/}c$ Jet = Toward - Transverse (Jet+UE - UE) ## In-jet and underlying event: coalescence parameter B_2 - Enhancement of B_2 jet wrt B_2 ^{UE} in pp and p—Pb collisions - Enhancement factor is larger in p–Pb wrt pp collisions - Due to the reduced distance in phase space of hadrons in jets compared to those out of jets → favors coalescence - $B_2^{\text{jet}}(p-Pb) > B_2^{\text{jet}}(pp)$ - $B_2^{\text{UE}}(p-\text{Pb}) < B_2^{\text{UE}}(pp)$, since p-Pb source size is larger than pp source size Assuming same source size for nucleons in jet - Might be more nucleons in p—Pb closer in phase space? - Larger B_2 in p-Pb #### In-jet and underlying event: d/p ratio ## B_2 in-jet and underlying event with model comparison #### ¹PYTHIA 8 Monash 13 + Coalescence #### ²PYTHIA 8.3 with reaction based deuteron production #### **Summary** - ✓ Light (anti)nuclei up to ³He have been measured in small systems - → Production of light nuclei evolves smoothly with the multiplicity - ✓ Experimental results challenge the models for A=3 nuclei - ✓ Production in small collision systems is also explored using the underlying event (UE) activity - ✓ The majority of the deuterons are produced in the underlying event - \checkmark B_2^{jet} is larger than B_2^{UE} by an order of magnitude - → nucleons might be closer in phase space - ✓ Models need to be improved for in-jet study - ✓ Further investigation with high statistics RUN 3 data (Stay tuned for new results) ## **Summary** - ✓ Light (anti)nuclei up to ³He have been measured in small systems - → Production of light nuclei evolves smoothly with the multiplicity - ✓ Experimental results challenge the models for A=3 nuclei - ✓ Production in small collision systems is also explored using the underlying event (UE) activity - ✓ The majority of the deuterons are produced in the underlying event - \checkmark B_2^{jet} is larger than B_2^{UE} by an order of magnitude - → nucleons might be closer in phase space - ✓ Models need to be improved for in-jet study - ✓ Further investigation with high statistics RUN 3 data (Stay tuned for new results) # THANK YOU FOR YOUR ATTENTION. # **BACK UP** ## LHC is an antinucleus factory LHC provides optimal conditions for studying the antinucleus formation #### Particle identification (PID) of (anti)nuclei #### Low momenta PID via specific ionization energy loss in TPC $$\langle -\frac{dE}{dx} \rangle = K z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln 2 \frac{m_e c^2 \beta^2 \gamma^2 W_{max}}{I^2} - \beta^2 - \frac{\delta(\beta \gamma)}{2} \right]$$ #### Higher momenta PID via time-of-flight measurements in TOF $$m^2 = \frac{p^2}{c^2} \cdot \left(\frac{c^2 t^2}{L^2} - 1\right)$$ # Coalescence parameter B_A Vs (p_T/A) PhysRevC.101.044906 (2020) pp @ 13 TeV p-Pb @ 5.02 TeV Coalescence parameter, B_A , is rather flat in multiplicity classes, but increases at high p_T/A in the MB class