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Saturation is expected to set at 
higher x in heavy nuclei
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If the impact parameter is large enough, photon induced interactions dominate: ultra-peripheral collisions (UPC)

QCD
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Jet production in Pb-Pb UPC
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Photonuclear jet production: photon energy

6
ATLAS-CONF-2022-021 

Photon energy

Triple differential 
cross section

Fixed xA

Different hard scales

Theory

The photon flux seems to be 
relatively well understood
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Photonuclear jet production: xA dependence

7ATLAS-CONF-2022-021 

Increasing photon energy

xA

Different hard scales

Evolution in xA for a fixed hard scale, relatively well understood down to a few times 10-3
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What else can we do?

8

Pb

Pb

(Jet)

Xn

Jet

Jet

The process I have discussed until now, is sensitive to the gluon 
distribution in hadrons. Can we do something different/complementary?

Let's look at a process that depends at leading order 
on the square of the gluon distribution in hadrons
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Coherent J/ψ production in Pb-Pb UPC
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12

At midrapidity both contributions 
are equal, no problem

At forward rapidities           dominates (95% of the cross section)

2

Guzey et al, Phys.Lett. B726 (2013) 290-295

1 2

Photonuclear cross sections at two rapidities, i.e. Bjorken-x

What we measure What we want What we want

How to extract the photonuclear cross section 
if the photon fluxes are known?

Perform two independent measurements at the same rapidity, 
but different impact parameter, then solve the equations.
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Photon fluxes at fwd  rapidity:

Ambiguity problem: use EMD
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Independent 
interaction

neutrons are emitted 
along the beamline

High γ energy Low γ energy

Three independent measurements at the same 
rapidity, but different impact parameters
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Run 2: rapidity dependence of J/ψ coherent production in EMD classes

15CMS, arXiv 2303.16984

CMS
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Several UPC measurements for each rapidity range → We can extract the photonuclear cross sections!
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J/ψ photonuclear production in Pb-Pb UPC

Mandelstam-t dependence
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Dynamic QCD effects seem to make the t-distribution steeper ... do nuclei grow with energy?
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γPb collisions: Mandelstam-t dependence of incoherent production

21

|t| related to the size of the target: effect 
of smaller structures appears at lager |t|

Production off nucleons

(Shadowing+HERA data)

Production off nucleons

(CGC approach)

Production off nucleons 
including hot spots


(CGC approach)

Production off nucleons including dissociation

(Shadowing+HERA data)

ALICE, arXiv 2305.06169

Models including  hot spots or dissociation agree better with the slope of data

Larger |t| is sensitive to quantum 
fluctuations of the colour field at 

sub-nucleon size scales

Guillermo Contreras, CTU in Prague 
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Expectations for Run 3+4 at the LHC

23

Current measurements were done with few thousand of J/ψ candidates from LHC Run 2 data

Guillermo Contreras, CTU in Prague 



Expectations for Run 3+4 at the LHC

23

Current measurements were done with few thousand of J/ψ candidates from LHC Run 2 data

The LHC Run 3 is ongoing and new data are being recorded!

Guillermo Contreras, CTU in Prague 



Millions of J/ψ expected In Run 3+4 

Expectations for Run 3+4 at the LHC

23

Pb-Pb UPCs: projections for 13 1/nb 
in the LHC Run 3 and 4 

Acceptances

Citron et al, CERN Yellow Rep.Monogr. 7 (2019) 1159-1410

Current measurements were done with few thousand of J/ψ candidates from LHC Run 2 data

The LHC Run 3 is ongoing and new data are being recorded!

|y|<0.9 |y|<2.4 2.5<|y|<4 2<|y|<5

Guillermo Contreras, CTU in Prague 
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The LHC keeps producing new photoproduction measurements, which allow us to 
understand better the nuclear structure at high energies (small Bjorken-x)

Many of the measurements from photon-induced processes not shown today: polarisation, flow, exclusive 
dijet production, A-dependence of ρ0, exclusive and dissociative vector meson production off protons, ...

The LHC Run 3 has started!

Large Pb-Pb data sample this year


 Oxygen-Oxygen and proton-Oxygen collisions for 2024

Later on p-Pb (γp) collisions
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Event from the 2022 data taking period

See partial list of results in the backup
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Summary and outlook
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The LHC keeps producing new photoproduction measurements, which allow us to 
understand better the nuclear structure at high energies (small Bjorken-x)

A bright future for photoproduction studies at 
the LHC with Run 3+4 data!

Many of the measurements from photon-induced processes not shown today: polarisation, flow, exclusive 
dijet production, A-dependence of ρ0, exclusive and dissociative vector meson production off protons, ...

The LHC Run 3 has started!

Large Pb-Pb data sample this year


 Oxygen-Oxygen and proton-Oxygen collisions for 2024

Later on p-Pb (γp) collisions
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Partial list of LHC results on photon-induced interactions
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