Measurement of the CP-violating phase $\phi_{\mathcal{S}}$ in the $\mathcal{B}^0_{\mathcal{S}} \to J/\psi\phi$ decay using ATLAS 2015-2017 data, 13 TeV

Marek Biros Charles University

> 23th May 2023 Београд

Motivation - Measurement of the CP-violating phase ϕ_s in the $B_s^0 o J/\psi \phi$ decay

CP violation - history

- In Standard Model the CP violation now well understood
 - Firstly observed in the system of neutral kaons [ref.]
 - ullet CPV occurs due to interference between a direct decay and a decay with ${\cal B}^0_s$ ${ar B}^0_s$ mixing

Transitions between quarks can be described by the CKM matrix:

$$\begin{bmatrix} |\textit{V}_{\textit{Ud}}| & |\textit{V}_{\textit{Us}}| & |\textit{V}_{\textit{Ub}}| \\ |\textit{V}_{\textit{Cd}}| & |\textit{V}_{\textit{Cs}}| & |\textit{V}_{\textit{Cb}}| \\ |\textit{V}_{\textit{Id}}| & |\textit{V}_{\textit{Is}}| & |\textit{V}_{\textit{Ub}}| \end{bmatrix} = \begin{bmatrix} 0.97370 \pm 0.00014 & 0.2245 \pm 0.0008 & 0.00382 \pm 0.00024 \\ 0.221 \pm 0.004 & 0.987 \pm 0.011 & 0.0410 \pm 0.0014 \\ 0.0080 \pm 0.0003 & 0.0388 \pm 0.0011 & 1.013 \pm 0.030 \end{bmatrix}$$

Motivation

New physics

 In the presence of new physics phenomena, sources of CP violation can arise in addition to those predicted by the Standard Model

$B^0_s o J/\psi(\mu^+\mu^-)\phi({\sf K}^+{\sf K}^-)$

- CPV in $B^0_s \to J/\psi \phi$ is described by the parameters ϕ_s , Γ^L_s , Γ^H_s (Γ_s , $\Delta \Gamma_s$) [ref.]
- ullet ϕ_s is related to the CKM matrix elements: $\phi_s \simeq 2 \arg[-(V_{ts}V_{tb}^*)/(V_{cs}V_{cb}^*)]$
 - $(|V_{tb}| \approx |V_{cs}| \approx 1; |V_{ts}| \approx |V_{cb}| \approx 0.04)$
- ϕ_s can be predicted in the SM with high precision (3%)
 - ullet $\phi_s = -0.03696^{+0.00072}_{-0.00082}$ rad by CKMFitter group
 - ullet $\phi_s = -0.03700 \pm 0.00104$ rad according to UTfit Collaboration
- Very precise measurment needed

Motivation

Accessible through a measurement of the time dependent angular distribution

Theoretical description

$$\frac{d^4\Gamma}{dtd\Omega} = \sum_{k=1}^{10} O^k(t)g^k(\theta_T, \Psi_T, \phi_T)$$

Probability density function for $B^0_s o J/\psi\phi$

k	$O^{(k)}(t)$	$g^{(k)}(heta_T,\psi_T,\phi_T)$
1	$\frac{1}{2} A_0(0) ^2 \left[(1+\cos\phi_s) e^{-\Gamma_{\rm L}^{(s)}t} + (1-\cos\phi_s) e^{-\Gamma_{\rm H}^{(s)}t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	$2\cos^2\psi_T(1-\sin^2\theta_T\cos^2\phi_T)$
2	$\frac{1}{2} A_{ }(0) ^{2}\left[(1+\cos\phi_{s})e^{-\Gamma_{L}^{(s)}t}+(1-\cos\phi_{s})e^{-\Gamma_{H}^{(s)}t}\pm 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2\psi_T(1-\sin^2\theta_T\sin^2\phi_T)$
3	$\frac{1}{2} A_{\perp}(0) ^{2}\left[(1-\cos\phi_{s})e^{-\Gamma_{\rm L}^{(s)}t}+(1+\cos\phi_{s})e^{-\Gamma_{\rm H}^{(s)}t}\mp2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2 \psi_T \sin^2 \theta_T$
4	$\frac{1}{2} A_0(0) A_{ }^{L}(0) \cos\delta_{ }$	$\frac{1}{\sqrt{2}}\sin 2\psi_T\sin^2\theta_T\sin 2\phi_T$
	$\left[(1 + \cos \phi_s) e^{-\Gamma_L^{(s)} t} + (1 - \cos \phi_s) e^{-\Gamma_H^{(s)} t} \pm 2 e^{-\Gamma_s t} \sin(\Delta m_s t) \sin \phi_s \right]$	
5	$ A_{\parallel}(0) A_{\perp}(0) [\frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t}-e^{-\Gamma_{\rm H}^{(s)}t})\cos(\delta_{\perp}-\delta_{\parallel})\sin\phi_{s}$	$-\sin^2\psi_T\sin2\theta_T\sin\phi_T$
	$\pm e^{-\Gamma_s t} (\sin(\delta_{\perp} - \delta_{\parallel}) \cos(\Delta m_s t) - \cos(\delta_{\perp} - \delta_{\parallel}) \cos\phi_s \sin(\Delta m_s t))]$	
6	$ A_0(0) A_{\perp}(0) \frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t}-e^{-\Gamma_{\rm H}^{(s)}t})\cos\delta_{\perp}\sin\phi_s$	$\frac{1}{\sqrt{2}}\sin 2\psi_T\sin 2\theta_T\cos\phi_T$
	$\pm e^{-\Gamma_s t} (\sin \delta_{\perp} \cos(\Delta m_s t) - \cos \delta_{\perp} \cos \phi_s \sin(\Delta m_s t))]$	'-
7	$\frac{1}{2} A_S(0) ^2 \left[(1 - \cos\phi_s) e^{-\Gamma_L^{(s)}t} + (1 + \cos\phi_s) e^{-\Gamma_H^{(s)}t} \mp 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	$\frac{2}{3}\left(1-\sin^2\theta_T\cos^2\phi_T\right)$
8	$ A_S(0) A_{\parallel}(0) [\frac{1}{2}(e^{-\Gamma_L^{(s)}t}-e^{-\Gamma_H^{(s)}t})\sin(\delta_{\parallel}-\delta_S)\sin\phi_S$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin^2\theta_T\sin2\phi_T$
	$\pm e^{-\Gamma_{s}t}(\cos(\delta_{\parallel}-\delta_{S})\cos(\Delta m_{s}t)-\sin(\delta_{\parallel}-\delta_{S})\cos\phi_{s}\sin(\Delta m_{s}t))]$	
9	$\frac{1}{2} A_S(0) A_{\perp}(0) \sin(\delta_{\perp}-\delta_S)$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin2\theta_T\cos\phi_T$
	$(1 - \cos \phi_s) e^{-\Gamma_L^{(s)} t} + (1 + \cos \phi_s) e^{-\Gamma_H^{(s)} t} \mp 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin \phi_s$	
10	$ A_0(0) A_S(0) [\frac{1}{2}(e^{-\Gamma_{\rm H}^{(s)}t}-e^{-\Gamma_{\rm L}^{(s)}t})\sin\delta_S\sin\phi_S$	$\frac{4}{3}\sqrt{3}\cos\psi_T\left(1-\sin^2\theta_T\cos^2\phi_T\right)$
	$\pm e^{-\Gamma_S t} (\cos \delta_S \cos(\Delta m_s t) + \sin \delta_S \cos \phi_s \sin(\Delta m_s t))]$	

Data collection

Results presented here [Eur. Phys. J. C 81 (2021) 342] use 80.5 fb^{-1} of 2015-2017 Run 2 data, statistically combined with 19.2 fb^{-1} Run 1

Data selection - $B^0 o J/\psi(\mu^+\mu^-)\overline{\phi(K^+K^-)}$

1. step) J/ψ reconstruction

- μ triggers (p_T(μ) > 4 GeV or 6 GeV)
- $\mu^+\mu^-$ refitted to a common vertex ($\chi^2/{\rm ndof} < 10$)
- ullet 3 pseudorapidity bins with different $\emph{m}(\mu\mu)$ window

2. step) ϕ reconstruction

- $p_T(K^{\pm}) > 1 \text{ GeV}$
- m(KK) ∈ (1008.5, 1030.5) MeV

3. step) $B^0 o J/\psi(\mu^+\mu^-)\phi(K^+K^-)$)

- 4 tracks ID momentum measurement only
- ullet B^0 candidates refitted from J/ψ and ϕ
 - $m(J/\psi)$ fixed to the PDG value
 - $m(B^0) \in (5150, 5650) \text{ MeV}$
 - $\chi^2/\text{ndof}(SV) < 3$
 - ullet B candidate with the smallest $\chi^2/{
 m ndof}$ is selected
- In 2015-2017, 2 977 526 B_s^0 candidates were collected.

Flavour tagging

Opposite-site tagging

- Knowledge of B_s/\bar{B}_s flavour at production significantly increases signal PDF sensitivity to ϕ_s
- Four taggers: Tight muon, electron, Low-p_T muon, b-jet
- Key variable: Q_X charge of p_T -weighted tracks in a cone (ΔR) around the opposite side primary object (μ , e, b-jet), used to build per-candidates B_s tag probability

$$ullet Q_X = rac{oldsymbol{\Sigma}_i^{N_{tracks}} oldsymbol{p}_{Ti}^{\kappa_i} q_i}{oldsymbol{\Sigma}_i^{N_{tracks}} oldsymbol{p}_{Ti}^{\kappa}}$$

- Calibration on self-tagged $B^{\pm} \to J/\psi K^{\pm}$
- Tagging probability is propagated into the likelihood

Maximal Likelihood Fit: mass + lifetime + 3 angles + conditional observables

The unbinned maximum likelihood fit was performed for:

- Observables: B_s^0 mass (m_i) , decay time (t_i) and the decay angles $\Omega = (\theta_T, \Psi_T, \phi_T)$
- Conditional obsevables: σ_{m_i} , σ_{t_i} , ρ_{T_i} and B-tagging probability: P(B|Q)
- Physics parameters:
 - ullet CPV phase $\phi_{\mathcal{S}}$
 - Decay widths: $\Delta\Gamma_s$, Γ_s
 - Decay amplitudes: $|A_0(0)|^2$, $|A_{\parallel}(0)|^2$, δ_{\parallel} , δ_{\perp}
 - S-wave: $|A_S(0)|^2$, δ_S
 - and Δm_s fixed to PDG, λ =1 (no direct CPV)

$$\begin{split} \text{In } \mathcal{L} &= \sum_{i=1}^{N_{events}} \{ w_i \cdot \ln(f_{\mathrm{s}} \cdot \mathcal{F}_{\mathrm{s}}(m_i, t_i, \sigma_m, \sigma_t, \Omega_i, P(B|Q), p_{\mathrm{T}_i}) \\ &+ f_{\mathrm{s}} \cdot f_{\mathcal{B}_{\mathcal{G}}^0} \cdot \mathcal{F}_{\mathcal{B}_{\mathcal{G}}^0}(m_i, t_i, \sigma_m, \sigma_t, \Omega_i, P(B|Q), p_{\mathrm{T}_i}) \\ &+ f_{\mathrm{s}} \cdot f_{\Lambda_b} \cdot \mathcal{F}_{\Lambda_b}(m_i, t_i, \sigma_m, \sigma_t, \Omega_i, P(B|Q), p_{\mathrm{T}_i}) \\ &+ (1 - f_{\mathrm{s}} \cdot (1 + f_{\mathcal{B}_{\mathcal{G}}^0} + f_{\Lambda_b})) \cdot \mathcal{F}_{\mathrm{bkg}}(m_i, t_i, \sigma_m, \sigma_t, \Omega_i, P(B|Q), p_{\mathrm{T}_i}))) \} \end{split}$$

Mass and Proper decay time projections

Fit with a good agreement with data

Decay angles projections

Fit with a good agreement with data

Results

$$\phi_s = -0.087 \pm 0.036 \, (stat.) \pm 0.021 \, (syst.)$$

Statistical uncertainty still dominant

	Solution (a)				
Parameter	Value	Statistical	Systematic		
		uncertainty	uncertainty		
ϕ_s [rad]	-0.087	0.036	0.021		
$\Delta\Gamma_s$ [ps ⁻¹]	0.0657	0.0043	0.0037		
Γ_s [ps ⁻¹]	0.6703	0.0014	0.0018		
$ A_{\parallel}(0) ^2$	0.2220	0.0017	0.0021		
$ A_0(0) ^2$	0.5152	0.0012	0.0034		
$ A_S ^2$	0.0343	0.0031	0.0045		
δ_{\perp} [rad]	3.22	0.10	0.05		
δ_{\parallel} [rad]	3.36	0.05	0.09		
$\delta_{\perp} - \delta_{S}$ [rad]	-0.24	0.05	0.04		

- ullet ϕ_s in agreement with the SM value
- ATLAS is consistent with CMS and LHCb

Summary

Conclusion

Results from ATLAS 2015-2017 combined with Run 1 were presented

- Measurement is consistent with the SM prediction and LHCb and CMS measurements
 - ullet $\phi_s^{ATLAS} = -0.087 \pm 0.036 \ (stat.) \pm 0.021 \ (syst.)$
 - $\quad \bullet \ \phi_s^{\it SM} = -0.03696^{+0.00072}_{-0.00082} \ {\rm rad} \ ({\rm CKMFitter})$
 - $m{\circ} \ \phi_s^{\it SM} = -0.03700 \pm 0.00104 \ {
 m rad} \ ({
 m UTfit})$
- Next step towards a more precise measurement
 - to add 60 fb^{-1} from 2018

Stay tuned for more results

- B_d lifetime measurement with $B_d^0 \to J/\psi K^*$ (Γ_s/Γ_d)
- B_s lifetime measurement with $B_s o \mu\mu$
- Measurement of the CP violation in $B_s \to J/\psi \phi$ with full Run 2 statistics

