Mixing and CP Violation in Charm (LHCP 2023)

Dr David Friday on behalf of the LHCb collaboration

University of Manchester david.friday@cern.ch

May 23, 2023

Overview

- Introduction
- 2 Measurement of the time-integrated CP asymmetry in $D^0 o K^-K^+$ decays
- 3 Search for *CP* violation in $D^+_{(s)} o K^-K^+K^+$ decays
- 4 Energy Test of CP violation in $D^0 o \pi^+\pi^-\pi^0$
- Summary

CP violation in Charm is one of the most compelling areas of flavour physics ^a both theoretically, and experimentally.

- Mixing suppressed by the GIM mechanism.
- Penguins suppressed by off diagonal CKM elements.
- CP violation in weak decay is predicted to be small from involved CKM factors.

^aconsiderable speaker bias

 $D^{0} \to K^{-}K^{+}$

 $D_{(s)}^+ \rightarrow K^- K^+ K^+$

 $0 o\pi^+\pi^-\pi^0$ (NEW

CP violation is a consequence of having three generations of quarks, such that the CKM

$$\begin{pmatrix} \mathbf{V}_{ud}, & \mathbf{V}_{us}, & \mathbf{V}_{ub} \\ \mathbf{V}_{cd}, & \mathbf{V}_{cs}, & \mathbf{V}_{cb} \\ \mathbf{V}_{td}, & \mathbf{V}_{ts}, & \mathbf{V}_{tb} \end{pmatrix},$$

is parameterised by three mixing angles and one CP violating phase.

CP violation can manifest in three ways. The first of these is in **decay**.

Where decays of the form $A \to f$ and $\bar{A} \to \bar{f}$ proceed at different rates.

Arises from non-zero contributions in the weak phase of the decay amplitudes.

Mixing is induced from differences between the meson mass and flavour eigenstates

$$|D_{1,2}
angle =
ho|D^0
angle \pm q|ar{D^0}
angle,$$

$$|p^2| + |q^2| = 1.$$

CP violation in **mixing** occurs when

$$|p| \neq |q|$$

where the weak and CP eigenstates differ. Explored through $D^0 \to K^{(*)+}I^-\bar{\nu}_I$ and other SL decays.

This final source of CP violation is interference.

Parameterised in terms of direct and mixing CPV parameters.

$$\phi = arg\left(rac{qar{A_f}}{pA_f}
ight)$$

Induces a weak phase rotation in the presence of CPV.

Measurement of the time-integrated CP asymmetry in $D^0 o K^-K^+$ decays

Observation of CP violation in Charm (PhysRevLett.122.21180) through

$$\Delta A_{CP} = \mathcal{A}_{CP}(K^-K^+) - \mathcal{A}_{CP}(\pi^-\pi^+)$$

Precision measurement of $\mathcal{A}_{CP}(K^-K^+)$ in combination with ΔA_{CP} provide insight into U-spin symmetry breaking.

Difficult measurement requiring a detailed understanding of detector and production asymmetries.

Figure: Calibrated (C_{D^+}) $D^0 \rightarrow K^-K^+$ sample (arXiv:2209.03179).

The Measurement

The raw asymmetry of the K^-K^+ system can be directly measured.

$$A(K^{-}K^{+}) = \frac{N(D^{*+} \to D^{0}\pi^{+}) - N(D^{*-} \to \bar{D}^{0}\pi^{-})}{N(D^{*+} \to D^{0}\pi^{+}) + N(D^{*-} \to \bar{D}^{0}\pi^{-})}$$

However, this asymmetry also contains detector asymmetries related to to the reconstruction efficiencies of the tagged pion $A_D(\pi_{tag}^+)$, and to production asymmetries of $A_P(D^{*+})$ in proton-proton collision.

$$A(K^-K^+) \approx \mathcal{A}_{CP}(K^-K^+) + A_p(D^{*+}) + A_D(\pi_{tag}^+)$$

Accounting for Asymmetries

These nuisance asymmetries are handled through **two** independent calibration procedures, C_{D^+} and $C_{D^+_a}$. C_{D^+} uses samples,

•
$$D^{+*} \to D^0(K^-\pi^+)\pi^+ : A_p(D^{*+}) + A_D(\pi^+_{tag}) + A_D(\pi^+) - A_D(K^+)$$

•
$$D^+ \to K^- \pi^+ \pi^+ : A_p(D^+) - A_D(K^+) + A_D(\pi_1^+) + A_D(\pi_2^+)$$

•
$$D^+ o \bar{K^0}\pi^+ : A_p(D^+) + A_D(\pi^+) + A(\bar{K^0})$$

$$C_{D^{+}}: \mathcal{A}_{CP}(K^{-}K^{+}) = \mathcal{A}_{CP}(K^{-}K^{+}) + [A_{p}(D^{*+}) - A_{p}(D^{*+})] + [A_{D}(\pi_{tag}^{+}) - A_{D}(\pi_{tag}^{+})] + [A_{D}(K^{+}) - A_{D}(K^{+})] + [A_{D}(\pi_{1}^{+}) - A_{D}(\pi^{+})] + [A_{p}(D^{+}) - A_{p}(D^{+})] + [A_{D}(\pi_{2}^{+}) - A_{D}(\pi^{+})] - A(\bar{K^{0}}) + A(\bar{K^{0}})$$

 $A(\bar{K^0})$ is the asymmetry arising from the combined effect of CP violation and mixing in the neutral kaon system and the different interaction rates of K^0 and $\bar{K^0}$ with the detector material.

$$\mathcal{A}_{CP}(K^-K^+) = \ [6.8 \pm 5.4(stat) \pm 1.6(syst)] imes 10^{-4}$$

direct CPV is accessed through

$$\mathcal{A}_{CP}(f) pprox a_f^d + rac{\langle t
angle_f}{ au_D} \Delta Y_f,$$

and found to be

$$a_{K^-K^+}^d = (7.7 \pm 5.7) \times 10^{-4}$$

 $a_{\pi^-\pi^+}^d = (23.2 \pm 6.1) \times 10^{-4}$

Figure: Measurements of $A_{CP}(K^-K^+)$ from various experiments (arXiv:2209.03179).

Implications

Figure: Central values and two-dimensional confidence regions in the $(a_{K^-K^+}^d, a_{\pi^-\pi^+}^d)$ plane (arXiv:2209.03179).

- ππ inconsistent with CP symmetry (3.8 σ) ← First evidence of **direct** CP violation in a specific charm decay.
- departure from *U*-spin symmetry of $(2.7 \sigma) \leftarrow a^d_{K^-K^+} + a^d_{\pi^-\pi^+} \neq 0$

Search for *CP* violation in $D_{(s)}^+ o K^-K^+K^+$ decays

First search for direct CP violation in

- $D_s^+ o K^- K^+ K^+$ CS (Cabibbo Suppressed) decays.
- $D^+ \to K^- K^+ K^+ DCS$ (Doubly Cabibbo Suppressed) decays.
- **NEW** model-independent method.
- 0.97 (D_s^+) and 1.27 (D^+) million candidates.
- CPV forbidden in DCS decays.

Figure: Invariant-mass distribution for $D_s^+ \to K^- K^+ K^+$ (arXiv:2303.04062)

Dalitz plot construction

Figure: Dalitz plot distribution of $D_s^+ \to K^- K^+ K^+$ (arXiv:2303.04062)

- The Dalitz space is defined in terms of S_{high}^{KK} and S_{low}^{KK} .
- Intermediate structures $D_s^+ \to \phi(1020)K^+$.
- Binned such that the number of signal candidates are approximately equal.

Binned model-independent technique

Signal candidates in each bin are extracted from invariant mass fits (an extension of the Miranda technique), removing background contributions to local CP asymmetries.

Figure: Dalitz plot bins of $D_s^+ \to K^-K^+K^+$ (arXiv:2303.04062)

Figure: Mass distribution of $D_s^+ \to K^- K^+ K^+$ extracted from bin (c) (arXiv:2303.04062)

CP violation?

Figure: Local S_{CP} $D^+ \rightarrow K^-K^+K^+$ (arXiv:2303.04062)

No evidence for direct CP violation. With respect to the null-hypothesis of no CP violation

- D_{ϵ}^{+} p-value = 13.3%.
- D^+ p-value = 31.6%.

- $D^0 \to \pi^+\pi^-\pi^0$ is comparable to $D^0 \to \pi^+\pi^-$.
- Uses a test statistic 'T' to compute local asymmetries.
- CS decay.
- Sensitive to interference between tree and penguin diagrams.
- Run 1 analysis returned p-value of 2.6% (j.physletb.2014.11.043).
- 3-body phase space can enrich local CPV effects.

Figure: Distribution of T-values obtained by running the energy test over the final $D^0 \to \pi^+\pi^-\pi^0$ signal sample (j.physletb.2014.11.043).

Figure: **IN PREPARATION (LHCb-PAPER-2023-005):** Dalitz plots for the background-subtracted signal samples for the resolved (left) and merged (right) π^0 .

$$T \equiv \frac{1}{2n(n-1)} \sum_{i,j \neq i}^{n} \psi_{ij} + \frac{1}{2\bar{n}(\bar{n}-1)} \sum_{i,j \neq i}^{\bar{n}} \psi_{ij} - \frac{1}{n\bar{n}} \sum_{i,j}^{n,\bar{n}} \psi_{ij}$$

The function ψ_{ij} gives a weighted distance between pairs in phase space $\psi_{ij}=e^{-d_{ij}^2/2\delta^2}$

Where $d_{ij}^2=(s_{12}^2+s_{13}^2+s_{23}^2)$ and δ is a tunable parameter.

Permutations of this T-value with randomised tags for the $D^0/\bar{D^0}$ define the CP-symmetry hypothesis.

Pseudoexperiments test CP asymmetries in the range (0.1%-1.0%) to analyse the choice of δ .

- Phase differences are injected into the subleading $\rho(770)^-\pi^+$ and dominant $\rho(770)^+\pi^-$.
- Yields are matched to data.
- Generated with(and without) background contamination.

Figure: IN PREPARATION (LHCb-PAPER-2023-005): Average p-value as a function of the energy test distance parameter δ .

RELIMINARY

No evidence for CP violation in localised regions of phase space is found for the decay.

- Validated with Cabibbo favoured (CF) $D^0 \to K^-\pi^+\pi^0$.
- P-value = 0.62. Consistent with no CPV hypothesis.
- Four times the data of the Run 1 result!

Figure: IN PREPARATION (LHCb-PAPER-2023-005): Distribution of T-values obtained by running the energy test over the final $D^0 \to \pi^+\pi^-\pi^0$ signal sample.

Summary

- No evidence for CP violation in $D^0 \to \pi^+\pi^-\pi^0$ (LHCb-PAPER-2023-005)
- No evidence for CP violation in $D^+_{(s)} \to K^-K^+K^+$ (arXiv:2303.04062)
- First evidence of direct CP violation in $D^0 \to \pi^+\pi^-$ (3.8 σ) (arXiv:2209.03179)

Any Questions!