

Outline

- Lepton Flavour Universality (LFU) is an accidental symmetry of the Standard Model
- Predicts that each lepton generation has identical coupling to gauge bosons, differences in decay rates are only due to masses
- Today, will cover LFU tests in τ and μ modes, with tree-level $b \to cl\nu$ decays
- LHCb also tests LFU in μ and e modes, with loop-level $b \rightarrow sll$ decays, see <u>talk by Florian</u> for more details

$R(D^*)$ measurements at LHCb

$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)} \tau \nu_{\tau})}{\mathcal{B}(B \to D^{(*)} \mu \nu_{\mu})}$$

Muonic	Hadronic
• $ au o \mu \nu \overline{\nu}$	• $ au o \pi\pi\pi(\pi^0)\bar{\nu}$
• Measure τ and μ modes in one dataset	• Need external BR measurements for normalisation
• Large statistics	• Precise reconstruction of $ au$ vertex
• Can measure $R(D^0)$ and $R(D^*)$ simultaneously	No muonic background

Combined measurement of $R(D^0)$ and $R(D^*)$

LHCB-PAPER-2022-039

$R(D^0)$ - $R(D^*)$ muonic

- Uses Run 1 LHCb data (3 fb⁻¹)
- Muonic τ decay has large branching fraction (17.4%)
- Make measurement of $R(D^0)$ and $R(D^*)$ using the same dataset
- Split dataset into two samples:
 - $\circ \{D^0\mu\}$ Veto $D^{*+} \to D^0\pi^+$
 - $\{D^*\mu\}$ Combine D^0 with slow pion
- $\{D^0\mu\}$ ~5 times larger due to higher branching fraction and efficiency
- Muonic decay used as normalisation, ~20 times larger than signal

Control regions

Use 3 separate control regions:

Fit strategy

- 3D template fit in q^2 , m_{miss}^2 , E_l^* , approximate B meson rest frame
- Fit 8 samples simultaneously
- Use two fully independent fitters, independent implementations
- Confirm agreement between two fitters
- Form factor (FF) models:
 - *D** : BGL [JHEP 12 (2017) 060]
 - $\circ D^0 : BCL [PRD 92 (2015) 054510]$
 - *D*** : Bernlochner & Ligeti [<u>PRD 95 (2017) 014022</u>]
- Helicity-suppressed terms constrained and other FF params are inferred from fit.

$$m_{miss}^2 = (p_B - p_{D^{(*)}} - p_l)^2$$

 $q^2 = (p_B - p_{D^{(*)}})^2$

Fit projections

• 4 bins are used in q^2 , projections in highest bin are shown

Result

$$R(D^*) = 0.281 \pm 0.018 \text{ (stat.)} \pm 0.024 \text{ (syst.)}$$

 $R(D) = 0.441 \pm 0.060 \text{ (stat.)} \pm 0.066 \text{ (syst.)}$

- $\rho = -0.43$
- 1.9 σ agreement with SM
- Main systematic uncertainties are from sizes of templates and background shapes $(B \to D^*DX \text{ and } B \to D^{**}\mu\nu)$

Taken from <u>CERN Seminar</u>

Measurement of $R(D^*)$ with hadronic τ decays

LHCB-PAPER-2022-052

$R(D^*)$ hadronic

- Update of Run 1 measurement, using data from 2015 and 2016 (2 fb⁻¹)
- Use a normalisation mode, then extract $R(D^*)$ using external branching fraction as input
- Knowledge of external branching fraction contributes a systematic uncertainty
- However, if we normalised to muonic mode directly, there would be larger systematic uncertainty from efficiency
- Therefore measure signal fraction relative to $B^0 \to D^{*-}\pi^+\pi^-\pi^+$

Measure:

$$\kappa(D^*) = \frac{\mathcal{B}(B^0 \to D^{*-}\tau^+\nu_{\tau})}{\mathcal{B}(B^0 \to D^{*-}\pi^+\pi^-\pi^+)}$$

From simulation $\kappa(D^*) = \frac{N_{sig}}{N_{norm}} \frac{\epsilon_{norm}}{\epsilon_{sig}} \left\{ \frac{1}{\mathcal{B}(\tau^+ \to 3\pi\bar{\nu}_{\tau}) + \mathcal{B}(\tau^+ \to 3\pi\pi^0\bar{\nu}_{\tau})} \right\}$

$$R(D^*) = \kappa(D^*) \left\{ \frac{\mathcal{B}(B^0 \to D^{*-}\pi^+\pi^-\pi^+)}{\mathcal{B}(B^0 \to D^{*-}\mu^+\nu_{\mu})} \right\}$$

External branching fraction input [PDG]

$R(D^*)$ hadronic

- ~40% more candidates than previous work (higher energy, better trigger)
- No muonic background, but large background from $\bar{B}^0 \to D^{*+} 3\pi X$
- Also large double charm background $(B \to D^*DX)$
- $\tau \to 3\pi(\pi^0)$ decay has branching fraction of 13.5%
- Approximate rest frames of B and τ due to missing neutrinos

$B \rightarrow D^* 3\pi X$ background

- Very large background
- Can reduce by using 3π vertex information must be displaced from B vertex in signal mode
- Use vertex separation variables in a BDT classifier, gives > 99% background rejection

Double charm background

- Another large background comes from $B_{(s)}^{(0)} \to D^{*-}D_s^+(\to 3\pi X)X$ events
- Most abundant background after full selection
- These can mimic the signal topology
- Train "anti- D_s^+ " BDT to reject these decays
- Use isolation and kinematic variables in training
- The BDT is also used as a fit variable

Double charm background

- Another large background comes from $B_{(s)}^{(0)} \to D^{*-}D_s^+(\to 3\pi X)X$ events
- Most abundant background after full selection

 Measure production fractions of these decays in separate fit, then use this to constrain signal fit Data $B^{0} \rightarrow D^{*-}D_{s0}^{*}(2317)^{+}$ $B \rightarrow \overline{D}^{*+}D_{s}^{+}X$

Double charm background

- Another large background comes from $B_{(s)}^{(0)} \to D^{*-}D_s^+(\to 3\pi X)X$ events
- Most abundant background after full selection
- Can invert the cut on the anti- D_s^+ BDT to obtain control sample in data
- Fit this sample for $D_s^+ \to 3\pi X$ decay fractions, use to correct simulation

Candidates / (40 MeV/ c^2

500

1000

 $m(\pi^{+}\pi^{+}) [\text{MeV}/c^{2}]$

1000

1500

 $m(3\pi)$ [MeV/ c^2]

Fit strategy

- 3D maximum likelihood template fit, using: $\{q^2, \text{ anti-}D_s^+ \text{ BDT}, \tau \text{ lifetime}\}$
- 8 bins in q^2 and τ lifetime, 6 bins in BDT output
- This fit is used to extract $B^0 \to D^{*-}\tau^+\nu_{\tau}$ yield
- $B^0 \to D^{*-}3\pi$ yield obtained from separate normalisation fit

$$\kappa(D^*) = \frac{\mathcal{B}(B^0 \to D^{*-}\tau^+\nu_{\tau})}{\mathcal{B}(B^0 \to D^{*-}\pi^+\pi^-\pi^+)} = 1.700 \pm 0.101 \,(stat) \,_{-0.100}^{+0.105} \,(syst)$$

This gives absolute branching fraction:

Main systematic uncertainties are template sizes and background template shapes

$$\mathcal{B}(B^0 \to D^{*-}\tau^+\nu_{\tau}) = (1.23 \pm 0.07 (stat) \pm 0.08 (syst) \pm 0.05 (ext)) \times 10^{-2}$$

From this analysis:

$$R(D^*) = 0.247 \pm 0.015 \, (stat) \pm 0.015 \, (syst) \pm 0.012 \, (ext)$$

Combining with previous (Run 1) result:

$$R(D^*) = 0.257 \pm 0.012 (stat) \pm 0.014 (syst) \pm 0.012 (ext)$$

Consistent with SM within 1σ

Updated world average

• With two new results (LHCb22, LHCb23), world average becomes:

- $R(D^*) = 0.284 \pm 0.013$
- $Price R(D) = 0.356 \pm 0.029$
- $\rho = -0.37$
- Deviation from SM for combined $R(D) R(D^*)$ moves from $\mathbf{3.3}\boldsymbol{\sigma}$ to $\mathbf{3.2}\boldsymbol{\sigma}$ with the two new results

Other measurements

Many other $R(H_c)$ being studied...

Phys. Rev. Lett. 120 (2018) 121801

	Run 1: 3 fb-1 at 7/8 TeV		Run 2: 6 fb-1 at 13 TeV	
mode	muonic	hadronic	muonic	hadronic
$R(D^+)$	Х	×	X	×
$R(D^0)$	V	×	Х	×
$R(D^*)$	/	✓	X	×
$R(\Lambda_c)$	Х	✓	X	×
$R(\Lambda_c^*)$	Х	×	Х	×
$R(J/\psi)$	V	×	X	×
$R(D_s^+)$	Х	×	X	×
$R(D_s^{*+})$	×	×	X	×

 $R(\Lambda_c)$ Phys. Rev. Lett. 128 (2022) 191803

Angular analyses

- Measurements of angular decay rate give more complete information than branching ratios complementary test of LFU
- Different strategies currently being pursued at LHCb:
- 1. Fit directly for Wilson Coefficients, assuming a particular FF parameterisation
- 2. Measure angular coefficients with a model independent method

$$\frac{d\Gamma(B \to D^* l \nu)}{dw \ d\cos\theta_l \ d\cos\theta_D \ d\chi} = \frac{3m_B^3 m_D^{*2} G_F^2}{16(4\pi)^4} \eta_{EW} |V_{cb}|^2 \sum_{i}^6 \mathcal{H}_i(w) k_i(\theta_l, \theta_D, \chi)$$

Measuring angular coefficients

- Aim to measure 12 q^2 -integrated angular coefficients in $B \to D^*lv$ in a model independent way
- Method outlined in proof of concept paper (JHEP 11 (2019) 133)
- Create a template for each angular term, assigning per-event weights to cancel decay model in MC

```
\frac{d^4\Gamma}{dq^2d(\cos\theta_D)d(\cos\theta_L)d\chi} \propto I_{1c}\cos^2\theta_D + I_{1s}\sin^2\theta_D
+[I_{2c}\cos^2\theta_D + I_{2s}\sin^2\theta_D]\cos 2\theta_L
+[I_{6c}\cos^2\theta_D + I_{6s}\sin^2\theta_D]\cos \theta_L
+[I_3\cos 2\chi + I_9\sin 2\chi]\sin^2\theta_L\sin^2\theta_D
+[I_4\cos\chi + I_8\sin\chi]\sin 2\theta_L\sin 2\theta_D
+[I_5\cos\chi + I_7\sin\chi]\sin\theta_L\sin 2\theta_D
```


Conclusions

- LFU tests in $b \rightarrow clv$ are an important component of LHCb's physics program
- Recently released two major measurements of $R(D^0)/R(D^*)$
- Complementary tests with other $R(H_c)$ measurements are being performed
- In addition, angular analyses of $B \to D^* l \nu$ are ongoing
- Still lots more data to analyse from Run 1 and 2, and have now started Run 3!

Backup

LHCb detector

- Designed to operate in forward region (2 < η < 5), exploiting large $\sigma_{b\bar{b}}$
- Run 1:

$$\int_{2011}^{2012} \mathcal{L} \ dt = 3 \text{ fb}^{-1}, \sqrt{s} = 7 - 8 \text{ TeV}$$

• Run 2:

$$\int_{2015}^{2018} \mathcal{L} \ dt = 6 \text{ fb}^{-1}, \sqrt{s} = 13 \text{ TeV}$$

• Run 3: New detector (2023 -),

$$\sqrt{s} = 13.6 \text{ TeV}$$

$R(D^*)$ measurements at LHCb

Previous measurements

- *R*(*D**) muonic, Run 1 data [Phys. Rev. Lett. 115, 111803 (2015)]
- *R*(*D**) hadronic, Run 1 data [Phys. Rev. Lett. 120, 171802 (2018)]

In this talk

- $R(D^0) R(D^*)$ muonic, Run 1 data [LHCB-PAPER-2022-039], submitted to PRL]
- *R*(*D**) hadronic, 2015+2016 data [<u>LHCB-PAPER-2022-052</u>, submitted to PRD]

World average status

- Status before two new LHCb results
- Contours defined by $\Delta \chi^2 = 1$
- This means horizontal bands represent 68% confidence interval, ellipses are 39%
- Precision of world average is much higher than any measurement
- Longstanding 3.3σ deviation with SM, difficult for this to move with a single measurement

Kinematic reconstruction

- Missing neutrinos create an experimental challenge, can't fit a clean mass peak
- Can't reconstruct $B\bar{B}$ rest frame at a hadron collider, so need to estimate B momentum
- Assume proper velocity $(\gamma \beta)$ of visible part $(D^{(*)}\mu)$ along z axis is equal to proper velocity of B along this axis
- This gives $p_B(z)$, other components determined from knowledge of B flight direction
- Can then construct other rest-frame quantities $(q^2, m_{miss}^2, E_{\mu}^*)$

$$|p_B| = \frac{m_B}{m_{D^*\mu}} p_{D^*\mu}(z) \sqrt{1 + \tan^2 \alpha}$$

Track isolation

- Technique used to reject backgrounds with additional tracks
- Aim is to isolate signal candidate from the rest of the event
- BDT used to determine whether a track is compatible with a B vertex
- Efficient separation of $B \to D^{**}\mu\nu$ processes, which are very signal-like
- Can also invert the cut to obtain control sample with enriched backgrounds

Control regions – one pion sample

- Sample requiring exactly one extra pion (of correct charge)
- This is used to model $B \to (D^{**} \to D^*\pi)l\nu$ backgrounds
- There are four known D^{**} resonances, their yields float individually
- Form factor model from Bernlochner & Ligeti [PRD 95 (2017) 014022], all parameters are unconstrained

Control regions – two pion sample

- Sample requiring exactly two extra pions
- This is used to model $B \to (D^{**} \to D^*\pi\pi)l\nu$ backgrounds
- These are heavier D^{**} species
- Currently no form factor model for this, use a cocktail simulation sample

Control regions – kaon sample

- Sample requiring at least one extra kaon
- This models $B \to D^{(*)}DX$ backgrounds
- Float the mass combinations of $B \to DDKX$ and fraction of $B \to DDK^*$

Comparison with previous result

- Previous measurement was only $R(D^*)$ with same data sample
- Refitted this sample, with updated procedure
- From this fit, obtain $R(D^*) = 0.293$, 1.6σ agreement with previous result

Fitting for Wilson Coefficients

- Use <u>HAMMER</u> package to reweight MC generated with SM decay model to NP scenarios
- Perform fits with CLN, BGL and BLPR parameterisations
- Statistical precision (Run 1 only) comparable to latest B-factory measurements (Phys. Rev. D 100, 052007 (2019), Phys. Rev. Lett. 123, 091801 (2019))

See: CERN-THESIS-2022-105

Systematics, $R(D^0) - R(D^*)$ muonic

Internal fit uncertainties	$\sigma_{\mathcal{R}(D^*)}(imes 10^{-2})$	$\sigma_{\mathcal{R}(D^0)}(imes 10^{-2})$	Correlation
Statistical uncertainty	1.8	6.0	-0.49
Simulated sample size	1.5	4.5	
$B \to D^{(*)}DX$ template shape	0.8	3.2	
$\overline{B} \to D^{(*)} \ell^- \overline{\nu}_{\ell}$ form-factors	0.7	2.1	
$\overline{B} \to D^{**} \mu^- \overline{\nu}_{\mu}$ form-factors	0.8	1.2	
$\mathcal{B} \ (\overline{B} \to D^* D_s^- (\to \tau^- \overline{\nu}_{\tau}) X)$	0.3	1.2	
MisID template	0.1	0.8	
$\mathcal{B} \; (\overline{B} \! o D^{**} au^- \overline{ u}_{ au} \;)$	0.5	0.5	
Combinatorial	< 0.1	0.1	
Resolution	< 0.1	0.1	
Additional model uncertainty	$\sigma_{\mathcal{R}(D^*)}(imes 10^{-2})$	$\sigma_{\mathcal{R}(D^0)}(imes 10^{-2})$	
$B \to D^{(*)}DX$ model uncertainty	0.6	0.7	
$\overline B{}^0_s\! o D_s^{**}\mu^-\overline u_\mu$ model uncertainty	0.6	2.4	
Data/simulation corrections	0.4	0.8	
Coulomb correction to $\mathcal{R}(D^{*+})/\mathcal{R}(D^{*0})$	0.2	0.3	
MisID template unfolding	0.7	1.2	
Baryonic backgrounds	0.7	1.2	
Normalization uncertainties	$\sigma_{\mathcal{R}(D^*)}(imes 10^{-2})$	$\sigma_{\mathcal{R}(D^0)}(imes 10^{-2})$	
Data/simulation corrections	$0.4 \times \mathcal{R}(D^*)$	$0.6{ imes}\mathcal{R}(D^0)$	
$\tau^- \to \mu^- \nu \overline{\nu}$ branching fraction	$0.2{ imes}\mathcal{R}(D^*)$	$0.2{ imes}\mathcal{R}(D^0)$	
Total systematic uncertainty	2.4	6.6	-0.39
Total uncertainty	3.0	8.9	-0.43

Systematics, $R(D^*)$ hadronic

Source	systematic uncertainty (%)
PDF shapes uncertainty (size of simulation sample)	2.0
Fixing $B \to D^{*-}D_s^+(X)$ bkg model parameters	1.1
Fixing $B \to D^{*-}D^{0}(X)$ bkg model parameters	1.5
Fractions of signal τ^+ decays	0.3
Fixing the $\overline{D}^{**}\tau^+\nu_{\tau}$ and $D_s^{**+}\tau^+\nu_{\tau}$ fractions	$^{+1.8}_{-1.9}$
Knowledge of the $D_s^+ \to 3\pi X$ decay model	1.0
Specifically the $D_s^+ \to a_1 X$ fraction	1.5
Empty bins in templates	1.3
Signal decay template shape	1.8
Signal decay efficiency	0.9
Possible contributions from other τ^+ decays	1.0
$B \to D^{*-}D^+(X)$ template shapes	$^{+2.2}_{-0.8}$
$B \to D^{*-}D^0(X)$ template shapes	1.2
$B \to D^{*-}D_s^+(X)$ template shapes	0.3
$B \to D^{*-}3\pi X$ template shapes	1.2
Combinatorial background normalisation	$^{+0.5}_{-0.6}$
Preselection efficiency	2.0
Kinematic reweighting	0.7
Vertex error correction	0.9
PID efficiency	0.5
Signal efficiency (size of simulation sample)	1.1
Normalisation mode efficiency (modelling of $m(3\pi)$)	1.0
Normalisation efficiency (size of simulation sample)	1.1
Normalisation mode PDF choice	1.0
Total systematic uncertainty	$+6.2 \\ -5.9$
Total statistical uncertainty	5.9

LFU in $b \rightarrow sll$

• At LHCb, test LFU in electron and muon modes by measuring:

$$R(K^{(*)}) = \frac{\mathcal{B}(B \to K^{(*)}\mu^{+}\mu^{-})}{\mathcal{B}(B \to K^{(*)}e^{+}e^{-})}$$

- Measure ratios normalised to $B \to J/\psi K^{(*)}$ to control efficiencies, and cancel systematics
- Have to correct for electron energy loss in the detector via Bremsstrahlung processes
- Make measurements in regions of q^2
 - \circ "Low": [0.1 1.1] GeV²
 - "Central": [1.1 6.0] GeV²

- New result measures R(K) and $R(K^*)$ consistent with SM (agree within 1σ)
- This supersedes previous result [Nature Physics 18, 277–282 (2022)]
- Main changes are due to misidentified hadronic background
 - Improved modelling
 - Tighter particle identification criteria for electrons

