VLQ searches and hadronic final states in the ATLAS experiment

11th Large Hadron Collider Physics Conference

Venugopal Ellajosyula

On behalf of the ATLAS collaboration May 23, 2023

Uppsala University

Contents

- Introduction to vector-like quarks and minimal Composite Higgs Models
- Pair-production:
 - Pair-produced vector-like top and bottom partners in events with large E_T^{miss} arxiv:2212.05263
 - Pair-production of vector-like quarks with at least one leptonically decaying Z boson and a 3rd generation quark
- Single-production:
 - Search for singly produced vector-like top partners in multilepton final states ATLAS-CONF-2023-020
 - Search for single production of vector-like T quarks decaying into Ht or Zt arXiv:2305.03401

This list is not exhaustive. A complete list of analyses with the full Run-2 data collected by ATLAS can be found here.

What are VLQs?

Vector-like fermions, ψ , have left- and right-handed chiralities that transform in the same way under the SM gauge group $SU(3)_C \times SU(2)_L \times U(1)_Y$

Only left-handed charged currents for SM quarks:

$$J^{\mu+}=J_L^{\mu+}=ar{u}_L\gamma^\mu d_L=ar{u}_L\gamma^\mu\left(1-\gamma^5
ight)d
ightarrow extbf{V}- extbf{A}$$

BOTH left- and right-handed charged currents for VLQs:

$$J^{\mu +} = J_L^{\mu +} + J_R^{\mu +} = \bar{u}_L \gamma^{\mu} d_L + \bar{u}_R \gamma^{\mu} d_R = \bar{u} \gamma^{\mu} d \rightarrow V$$

Additionally, gauge-invariant mass terms, $-M\bar{\psi}\psi$, allowed without the need of Higgs.

Composite-Higgs models and vector-like quarks

- The Higgs boson is a composite pseudo-Nambu-Goldstone boson (pNGB) from spontaneous breaking of a global symmetry in a new strongly coupled sector
 - ightarrow This protects the Higgs mass.
- Models with partial compositeness predict new vector-like fermions.
- Simplest extensions with VLQ
 (T^{2/3}, B^{-1/3} and X^{5/3}) singlets,
 doublets, and triplets.
- VLQs assumed to decay via charged and neutral currents to 3rd generation quarks.

- QCD pair-production: Mass-independent, dominant at low mass
- Single-production: Scales with coupling, model dependent, significant at high mass.

3

Pair-Production

Pair-produced vector-like top and bottom partners in events with large $\mathsf{E}_\mathsf{T}^\mathsf{miss}$ arxiv:2212.05263

- Vector-like $T^{2/3}$, $B^{-1/3}$, and $X^{5/3}$ considered
- Events characterized by low lepton-multiplicity, high jet-multiplicity, and large E_T^{miss}
- Dominant backgrounds: $t\bar{t}$ and W+jets
 - ⇒ reduced using cuts on transverse mass
- At least one top quark from the signal expected to have a high p_T
 ⇒ requirement on large-R jets
- Neural networks used to discriminate between signal and background
 - \Rightarrow Input variables such as high m_{eff} for VLQ mass, properties of large-R jets, b-jet multiplicity, transverse mass etc. used
- The search uses 139 fb⁻¹ data collected with the ATLAS detector

Examples of discriminating variables

Results

VLQ	Scenario	Obs. limit (TeV)
T(B)	Singlet	1.26 (1.33)
T	(T,B) or (X,T) doublet	1.41
B/X	(T,B) or (X,T) doublet	_
	or $\mathcal{B}(B/X) o Wt = 100$	1.46
T/B/X	(T,B) or (X,T) doublet	
	mass-degenerate	1.59

- No significant excesses
- Analysis most sensitive to the T o Zt and B o Wt decay modes
- Strongest limits for the (T,B) and (X,T) when $m_X=m_T=m_B$ are at 1.59 TeV

Pair-production of vector-like quarks with at least one leptonically decaying Z boson and a 3^{rd} generation quark

arxiv:2210.15413

- Optimized for decays to a leptonically-decaying Z boson and a third generation SM quark.
- Events characterized by high- p_T Z boson, b-tagged jets, high- p_T large-R jets, exactly 2ℓ or $\geq 3\ell$, boosted W, Z, H, and t.
- Categorization done using a neural-network based boosted object tagger.

Multi-Class Boosted Object Tagger (MCBOT)

- Large-R jets reclustered from calibrated R=0.4 jets used as input to MCBOT to identify hadronically decaying V, H, and top quark.
- Based on multi-class DNN trained using RC jets from $Z' \to t\bar{t}$, $W' \to WZ$, and KK-graviton $\to hh$ simulations, with multijet as background.
- Three signal labels (V, H, top) are obtained by matching the RC jet to the corresponding boson or top quark at generator-level within $\Delta R < 0.75$.

Results

Model	Observed (Expected) Mass Limits [TeV]			
Model	2ℓ	3ℓ	Combination	
$T\bar{T}$ Singlet	1.14 (1.16)	1.22 (1.21)	1.27 (1.29)	
$T\bar{T}$ Doublet	1.34 (1.32)	1.38 (1.37)	1.46 (1.44)	
$100\% T \rightarrow Zt$	1.43 (1.43)	1.54 (1.50)	1.60 (1.57)	
BB Singlet	1.14 (1.21)	1.11 (1.10)	1.20 (1.25)	
$B\bar{B}$ Doublet	1.31 (1.37)	1.07 (1.04)	1.32 (1.38)	
$100\% B \rightarrow Zb$	1.40 (1.47)	1.16 (1.18)	1.42 (1.49)	

- No significant excesses
- Combined results exclude T masses upto 1.27 and 1.46 TeV for singlet and doublet configurations
- Combined results exclude B masses upto 1.20 and 1.32 TeV for singlet and doublet configurations
- These limits are better than the previous searches by more than 200 GeV.

Single-production

Search for singly produced vector-like top partners in multilepton final states ATLAS-CONF-2023-020

- Optimized for vector-like quarks decaying to Z bosons which further decays to a pair of electron or muons
- Characterized by the presence of a pair of opposite-sign dileptons, b-jets, and forward jets
- Two final states (2 ℓ and 3 ℓ) optimized independently
- ullet Analysis uses 139 fb $^{-1}$ data collected with the ATLAS detector
- Improvements compared to previous iteration of this search are mainly from more data, better kinematic selections, and more efficient top-tagging

Signal topology

- Signal expected to have high energy objects, including Z boson and boosted top quark
- Forward jets scattering off of a heavy, off-shell vector boson from one of the incoming partons
- Angular separation between Z and top quark expected to be high

Results

- No significant excesses
- Limits on cross-sections reinterpreted in the coupling-mass, and width-BR planes
- Only singlet case shown here
- Coupling, κ , between 0.22 and 0.64 excluded for masses between 1000 and 1975 GeV
- Doublet exclusions slightly weaker

Search for single production of vector-like T quarks decaying into Ht or Zt arXiv:2305.03401

- Analysis targets final states with 1ℓ , multiple jets and b-jets using 139 fb⁻¹ data collected with the ATLAS detector
- Presence of boosted resonance used to discriminate between signal and background
- Wide range of couplings of the VLQ to W, Z and h bosons probed
- Improvements of $\sim 1.6 x$ in the exclusion limits of the coupling compared to previous search thanks to more data, better kinematic selections, improved top-tagging

Signal topology

- Major backgrounds: $t\bar{t}$, single top, V+jets
- Several high energy objects from decay of VLQ
 - \Rightarrow high m_{eff} + boosted jets from top quark, W/Z/Higgs bosons
- Presence of forward jets
- Target signal categories: $T(\to Zt)qb$, $T(\to Ht)qb$, $T(\to Zt)qt$, $T(\to Zt)qt$
 - ⇒ Requirements on object multiplicities for different SRs

Results

- No significant excess
- Upper limits on cross-section, universal coupling (κ) , and relative couplings to W,Z, Higgs
- Singlet case: $m_T < 2.1$ TeV excluded for $\kappa > 0.6$
- **Doublet case**: $m_T < 1.68$ TeV excluded for $\kappa > 0.75$

Summary

- Vector-like quarks predicted by several models including CHMs
- Searches presented in this talk consider the minimal CHMs with three types of VLQs, $T^{2/3}$, $B^{-1/3}$, and $X^{5/3}$ decaying to SM
- Searches for third generation vector-like quarks produced singly and in pairs presented here
- No significant excesses seen but several new and innovative methods were developed
- Limits on the masses with more data and newer methods stronger than before.

Backup

Search for singly produced vector-like top partners in multi-lepton final states ATLAS-CONF-2023-020

Dilepton channel

	$2\ell CR1$	2ℓCR2	$2\ell CR3$	$2\ell VR1$	2ℓVR2	$2\ell SR$
	1 pair of OS-SF leptons with $ m(\ell\ell) - m_Z < 10 \text{ GeV}$					
Preselection	$p_{\rm T} (\ell \ell) > 200 \text{ GeV}, H_{\rm T} > 300 \text{ GeV}$					
	$\geq 1 \text{ vRC jet}$					
	$H_{\mathrm{T}} + E_{\mathrm{T}}^{\mathrm{miss}} < m_{\ell\ell J}$					
forward jets	≥ 1	0	0	≥ 1	0	≥ 1
b-tagged jets	0	≥ 1	0	0	≥ 1	≥ 1
top-tagged jets	-	-	≥ 1	≥ 1	≥ 1	≥ 1
top-vetoed jets	≥ 1	≥ 1	-	-	-	-

- Dominant backgrounds from Z+ jets, and smaller contribution from VV and $t\bar{t}$
- Signal expected to have high energy objects, including Z boson and top quark
 - Requirements on $p_T(\ell\ell)$ and H_T
 - Require atleast one variable radius reclustered (vRC) jet originating from the boosted top quark
- ullet Mass of the VLQ reconstructed using the Z boson candidate, and the leading vRC jet
- Forward jets scattering off of a heavy, off-shell vector boson from one of the incoming partons also expected

Dilepton channel

- Signal expected to have high energy objects, including Z boson and top quark
 - Requirements on $p_T(\ell\ell)$ and H_T
 - Require atleast one variable radius reclustered (vRC) jet originating from the boosted top quark
- Mass of the VLQ reconstructed using the Z boson candidate, and the leading vRC jet
- Forward jets scattering off of a heavy, off-shell vector boson from one of the incoming partons also expected

Trilepton channel

	3ℓVV	3ℓMixed	3ℓttX	3ℓVR	3ℓSR
Preselection	≥ 3 leptons $\geq 1 \text{ pair of OS-SF leptons with } m(\ell\ell) - m_Z < 10 \text{ GeV}$				
b-tagged jets	0	1	≥ 2	≥ 1	≥ 1
forward jets	-	0	0	≥ 1	≥ 1
$\Delta \phi$ selections	-	$\Delta \phi(Z, \ell_3) < 2.6$	$\Delta \phi(Z, \ell_3) < 2.6$	$\Delta \phi(Z, \ell_3) < \frac{\pi}{2} \text{ OR}$ $\Delta \phi(Z, b_{lead}) < \frac{\pi}{2}$	$\Delta \phi(Z, \ell_3) > \frac{\pi}{2} \text{ AND}$ $\Delta \phi(Z, b_{\text{lead}}) > \frac{\pi}{2}$
other selections	-	-	-	-	$\max(p_{\mathrm{T}}(\ell)) > 200 \text{ GeV}$ $p_{\mathrm{T}}(\ell\ell) > 300 \text{ GeV}$ $H_{\mathrm{T}} \cdot n(\text{jets}) < 6 \text{ TeV}$

- Dominant background sources are VV, ttV, ttH
- Similar to the 2ℓ channel, b-jets and forward jets are expected, in addition to high p_T objects such as the Z boson and top quark
- Angular separation between Z and top quark expected to be high
 - Additional requirements on $\Delta\phi(Z,\ell_3)$ and $\Delta\phi(Z,b_{\textit{lead}})$

Trilepton channel

- Dominant background sources are VV, ttV, ttH
- Similar to the 2ℓ channel, b-jets and forward jets are expected, in addition to high p_T objects such as the Z boson and top quark
- Angular separation between Z and top quark expected to be high
 - Additional requirements on $\Delta\phi(Z,\ell_3)$ and $\Delta\phi(Z,b_{\textit{lead}})$