Precision calculations in QCD

Federico Buccioni

Physik-Department Technische Universität München

Large Hadron Collider Physics Conference 22nd May 2023

Federico Buccioni

Purpose and intention of this talk

Current and future vast LHC precision phenomenology program:

Main challenges to and requirements from precise theory predictions

diverse signatures (jets, heavy-quarks, vector bosons, associated productions...) larger multiplicites higher-order perturbative calculations

How do we go about it and how to improve? Where do we stand and what can we expect next?

Federico Buccioni

Purpose and intention of this talk

Current and future vast LHC precision phenomenology program:

Main challenges to and requirements from precise theory predictions diverse signatures (jets, heavy-quarks, vector bosons, associated productions...)

larger multiplicites

higher-order perturbative calculations

How do we go about it and how to improve? Where do we stand and what can we expect next?

Main focus of this talk: fixed-order predictions in QCD

- methods and frameworks (status and progress)
- (some) pheno results at the current frontier

fixed-order does not give you events but:

- Theoretically well defined framework, improvable (parametrically)
- ingredients for resummation/matching
- analysis of main higher-order effects

Purpose and intention of this talk

Current and future vast LHC precision phenomenology program:

Main challenges to and requirements from precise theory predictions

diverse signatures (jets, heavy-quarks, vector bosons, associated productions...)

larger multiplicites

higher-order perturbative calculations

How do we go about it and how to improve? Where do we stand and what can we expect next?

Main focus of this talk: fixed-order predictions in QCD

- methods and frameworks (status and progress)
- (some) pheno results at the current frontier

fixed-order does not give you events but:

- Theoretically well defined framework, improvable (parametrically)
- ingredients for resummation/matching
- analysis of main higher-order effects

Beyond fixed order QCD and complementary to this talk:

- Broader discussion on current status of pheno studies and events generation: Zanderighi (Tue)
- Jets substructure + flavour: Stagnitto (after this talk)
- Improvements on showers: Herren (Thu)
- generators: Diboson Zanoli, polarised V Pelliccioli (Thu)
- PDFs: Cruz-Martinez (Thu)
- Precise predictions for heavy-quarks: Grazzini (Thu)
- EW + QCDxEW: Lindert (Fri)

$$\frac{\mathrm{d}\sigma_{AB}}{\mathrm{d}O} = \sum_{ab} \int_0^1 \mathrm{d}x_1 \mathrm{d}x_2 \, f_{a/A}(x_1) f_{b/B}(x_2) \, \frac{\mathrm{d}\hat{\sigma}_{ab}(x_1, x_2)}{\mathrm{d}O} \times \left(1 + \mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}^p}{Q^p}\right) \right)$$

Federico Buccioni LHCP 22/05/2023

$$\frac{\mathrm{d}\sigma_{AB}}{\mathrm{d}O} = \sum_{ab} \int_0^1 \mathrm{d}x_1 \mathrm{d}x_2 \frac{f_{a/A}(x_1) f_{b/B}(x_2)}{f_{a/A}(x_1) f_{b/B}(x_2)} \frac{\mathrm{d}\hat{\sigma}_{ab}(x_1, x_2)}{\mathrm{d}O} \times \left(1 + \mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}^p}{Q^p}\right)\right)$$

PDFs: non-perturbative

evolution through DGLAP 4-loop splitting functions for N³LO evolution

Federico Buccioni LHCP 22/05/2023

$$\frac{\mathrm{d}\sigma_{AB}}{\mathrm{d}O} = \sum_{ab} \int_0^1 \mathrm{d}x_1 \mathrm{d}x_2 \frac{f_{a/A}(x_1) f_{b/B}(x_2)}{\mathrm{d}O} \frac{\mathrm{d}\hat{\sigma}_{ab}(x_1, x_2)}{\mathrm{d}O} \times \left(1 + \mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}^p}{Q^p}\right)\right)$$

PDFs: non-perturbative

evolution through DGLAP 4-loop splitting functions for N³LO evolution Fully-differential partonic cross-section

Improved parametrically in perturbation theory

Main ingredients to push pert. predictions:

Amplitudes + Subtraction of IR singularities

Federico Buccioni ero

Non-perturbative power corrections

Interesting recent progress on pow. corrections for collider observables

see G. Zanderighi (Tue)

$$\frac{\mathrm{d}\sigma_{AB}}{\mathrm{d}O} = \sum_{ab} \int_0^1 \mathrm{d}x_1 \mathrm{d}x_2 \frac{f_{a/A}(x_1) f_{b/B}(x_2)}{\mathrm{d}O} \frac{\mathrm{d}\hat{\sigma}_{ab}(x_1, x_2)}{\mathrm{d}O} \times \left(1 + \mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}^p}{Q^p}\right)\right)$$

PDFs: non-perturbative

evolution through DGLAP 4-loop splitting functions for N³LO evolution

Fully-differential partonic cross-section

Improved parametrically in perturbation theory Main ingredients to push pert. predictions:

Amplitudes + Subtraction of IR singularities

Federico Buccioni LHCP 22/05/2023

Non-perturbative power corrections

Interesting recent progress on pow. corrections for collider observables

see G. Zanderighi (Tue)

$$\frac{\mathrm{d}\sigma_{AB}}{\mathrm{d}O} = \sum_{ab} \int_0^1 \mathrm{d}x_1 \mathrm{d}x_2 \frac{f_{a/A}(x_1)f_{b/B}(x_2)}{\mathrm{d}O} \frac{\mathrm{d}\hat{\sigma}_{ab}(x_1, x_2)}{\mathrm{d}O} \times \left(1 + \mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}^p}{Q^p}\right)\right)$$

PDFs: non-perturbative

evolution through DGLAP 4-loop splitting functions for N³LO evolution Fully-differential partonic cross-section

Improved parametrically in perturbation theory

Main ingredients to push pert. predictions:

Amplitudes + Subtraction of IR singularities

Focus of this talk

Federico Buccioni erc

Scattering Amplitudes

Complexity increases fast with loops and scales: availability of multiscale-multiloop amplitudes are now arguably the bottleneck of NNLO predictions

Current frontier (loops > 1): loops + legs = 7

Complexity increases fast with loops and scales: availability of multiscale-multiloop amplitudes are now arguably the bottleneck of NNLO predictions

masses (external) Current frontier (loops > 1): loops + legs = 7legs Third direction in complexity space 5 legs loops * Done loops

Federico Buccioni

Complexity increases fast with loops and scales: availability of multiscale-multiloop amplitudes are now arguably the bottleneck of NNLO predictions

masses (external) Current frontier (loops > 1): loops + legs = 7legs Third direction in complexity space 5 legs loops * Done ♦ In-sight (X+jet @3-loop) loops Mostly manageable with analytical methods

Complexity increases fast with loops and scales: availability of multiscale-multiloop amplitudes are now arguably the bottleneck of NNLO predictions

masses (external) Current frontier (loops > 1): loops + legs = 7 legs eg: ttH/ttW Third direction eg: VV+jet,tt+jet in complexity space 5 legs loops * Done Work in progress (extremely hard nuts to crack) loops Mostly manageable with analytical methods Numerical methods will play a dominant role

Federico Buccioni

Scattering amplitudes: 2→2 @ 3-loops in QCD

All 3-loop $2\rightarrow 2$ amplitudes with external massless partons are now available

Master Integrals [Henn, Mistlberger, Wasser '20] + Calculation of the amplitudes [Bargiela, Caola, Chakraborty, Gambuti, von Manteuffel, Tancredi '21,'22]

Federico Buccioni

Scattering amplitudes: 2→2 @ 3-loops in QCD

All 3-loop $2\rightarrow 2$ amplitudes with external massless partons are now available

Master Integrals [Henn, Mistlberger, Wasser '20] + Calculation of the amplitudes [Bargiela, Caola, Chakraborty, Gambuti, von Manteuffel, Tancredi '21,'22]

First pheno application of a 3-loop QCD amplitude

Signal-background interference in Higgs-mediated diphoton production [Bargiela, FB, Caola, Devoto, von Manteuffel, Tancredi '23]

Interesting effects:

- Apparent mass shift O(50-80 MeV)
- \bullet Destructive interference effects \sim 1.6% reduction of signal XS
- Looser indirect bounds on Γ_{H}

Scattering amplitudes: 2→3 @ 2-loops in QCD

Contributors: [Abreu, Agarwal, Badger, FB, Chawhdry, Chicherin, Czakon, Cordero Febres, Gehrmann, Brønnum-Hansen, Hartanto, Henn, Ita, Klinkert, Kryś, Marcoli, Mitov, Moodie, Page, Pascual, Peraro, Poncelet, Sotnikov, Tancredi, Manteuffel von, Zoia]

All $2\rightarrow 3$ massless amplitudes basically available (some in leading-colour approx. some exact)

Big boost from availability & fast evaluation of "Pentagon Functions" [Chicherin, Sotnikov '20] + new methods to cope with algebraic complexity

First results and steady progress on 2→3 amplitudes with one massive external particle (all available in leading-colour)

One-mass Pentagon functions [Chicherin, Sotnikov, Zoia '22]

Looking ahead

- two external masses, eg tt+j/ γ , VV+j/ γ
- three external masses, eg tt+H/W

Promising numerical methods:

- pySecDec [Borowka, Heinrich, Jahn, Jones, Kerner, Langer, Magerya, Poldaru, Schlenk, Villa, Zirke]
- DiffExp [Hidding] + Seasyde [Armadillo, Bonciani, Devoto, Rana, Vicini]
- AMFlow [Chen,Liu, Ma, Tao, Zhang]

questions: efficiency, grids (?)

Federico Buccioni

Subtraction frameworks

IR-subtraction schemes

Two main approaches:

Local subtraction

$$\int |\mathcal{M}|^2 F_J \, \mathrm{d}\Phi^{(d)} = \int \left(|\mathcal{M}|^2 F_J - S \, \mathrm{d}\Phi^{(4)} \right) + \int S \, \mathrm{d}\Phi^{(d)}$$

Antenna [Gehrmann-de Ridder, Gehrmann, Glover et al]

Stripper [Czakon, Heymes, Mitov, Poncelet]

Nested Soft Collinear [Caola, Melnikov, Röntsch]

Projection-2-Born [Cacciari, Dreyer, Karlberg, Salam, Zanderighi]

Local analytic [Magnea, Maina, Pelliccioli, Signorile-Signorile, Torrielli, Uccirati]

Colorfull [Del Duca, Duhr, Kardos, Somogyi, Trocsanyi]

Slicing

$$\int |\mathcal{M}|^2 F_J \, \mathrm{d}\Phi^{(d)} = \int_0^{\Lambda} |\mathcal{M}|^2 F_J \, \mathrm{d}\Phi^{(d)} + \int_{\Lambda}^1 S \mathrm{d}\Phi^{(4)} + \mathcal{O}(\Lambda)$$

QT [Catani, Grazzini], [Bozzi, Catani, Grazzini, Ferrera, de Florian, Cieri, Devoto, Mazzitelli, Sargsyan, Torre] N-jettiness [Boughezal, Liu, Petriello, Ellis, Campbell, Williams; Tackmann, Gaunt, Stahlhofen, Walsh] K+-ness [Buonocore, Grazzini, Haag, Rottoli, Savoini]

> Both approches (in various incarnations) have proved very successfull

Key requirements to success:

- Subtraction: deal with singularities of multi-particle amplitudes: Sector decomposition vs Exploit property of amplitudes
- Slicing: good slicing parameter Λ + ability to express the cross section for $\Lambda \rightarrow 0$
- Devising a NNLO IR subtraction scheme is not a (conceptual) bottleneck anymore
- In practice we are far from an NLO-like situation: completely generic, simple and automatable framework (e.g. CS, FKS)

IR subtraction schemes: Slicing

Example: N-jettines

$$\lim_{\tau \to 0} d\sigma_{pp \to V + X}^{N^{\mathsf{k}}LO} \approx B \otimes B \otimes S \otimes H \otimes d\sigma_{pp \to V}^{LO}$$

[Stewart, Tackmann, Waalewijn]

9_T
Similar factorisation + resummation formula
[Collins, Soper, Sterman] [Catani, De Florian, Grazzini] [Becher, Neubert]

NNLO:

• N-jettiness: amenable to describe low jet-multiplicity cross-sections: 0/1 jets + colour singlets

see M. Grazzini's talk on Friday

• q_: developed for colour-singlet, extended to heavy-quarks pair and recently heavy-quarks + col. singlet

Pros: 1) implementation less involved → publicly available programs

Matrix [Grazzini, Kallweit, Wiesemann] MCFM [Campbell, Ellis, Neumann, Williams]

2) offer natural matching procedure (NNLO-PS)

Walsh1

MINNLO-PS (q_T)

[Nason, Lombardi, Mazzitelli, Monni, Re, Wiesemann, Zanderighi] GENEVA (N-jettiness)
[Alioli, Bauer, Berggren, Guns, Tackmann,

N³LO:

Slicing methods conceptually simpler than subtraction: easier to extend to N³LO

V+j@NNLO & knowledge (factorisation/resummation) of cross-section at small values of the slicing parameter

N-jettiness

- N³LO Beam-functions [Ebert, Mistlberger, Vita '20] [Baranowski, Behring, Melnikov, Tancredi, Wever '22]
- 0- jettiness soft function, first results [Baranowski, Delto, Melnikov, Wang '22]
- The higher the jettiness, the (much) harder the soft function

 q_T

All ingredients for colour singlet @N3LO available

- N³LO Soft function [Li, 2hu 16]
- N³LO Beam-functions [Ebert, Mistlberger, Vita '20]

Federico Buccioni

LHCP 22/05/2023

7

IR subtraction scheme: local subtractions

Fully local, therefore very efficient (although comparison between methods not really well defined)

a given approach to the various ensuing aspects/complexities define a local subtraction scheme

Conceptually (rather) insensitive to jets multiplicity, but implementation highly non-trivial

Frontier of jets multiplicity: 3 jets @ NNLO [Czakon, Mitov, Poncelet '22]

In principle, we can now address any final state signature/multiplicity

Most robust and well developed subtraction schemes:

X+ jet @ NNLO key ingredient for X@N3LO

Federico Buccioni

IR subtraction scheme: local subtractions

Fully local, therefore very efficient (although comparison between methods not really well defined)

a given approach to the various ensuing aspects/complexities define a local subtraction scheme

Conceptually (rather) insensitive to jets multiplicity, but implementation highly non-trivial

Frontier of jets multiplicity: 3 jets @ NNLO [Czakon, Mitov, Poncelet '22]

In principle, we can now address any final state signature/multiplicity

X+jet@NNLO key ingredient for X@N3LO

Most robust and well developed subtraction schemes:

Antenna subtraction

- complete pheno for X+ jet @NNLO
- full-colour dijet@NNLO [Chen, Huss, Gehrmann, Glover, Mo '22]
- automation for 3-jets, gluonic case [Chen, Huss, Gehrmann, Glover, Marcoli '22]
- first ingredients for N³LO antennae from inclusive colour-singlet decays at N³LO [Chen, Jakubčík, Marcoli, Stagnitto '23]

Sector-Improved Residue Subtraction (Stripper)

- full-colour dijet@NNLO [Czakon, van Hameren, Mitov, Poncelet, 19]
- vast 2→3 pheno studies@NNLO [Czakon, Mitov, Poncelet]
- three-jets @NNLO [Czakon, Mitov, Poncele '21]

IR subtraction scheme: local subtractions

Fully local, therefore very efficient (although comparison between methods not really well defined)

a given approach to the various ensuing aspects/complexities define a local subtraction scheme

Conceptually (rather) insensitive to jets multiplicity, but implementation highly non-trivial

Frontier of jets multiplicity: 3 jets @ NNLO [Czakon, Mitov, Poncelet '22]

In principle, we can now address any final state signature/multiplicity

X+jet@NNLO key ingredient for X@N3LO

Most robust and well developed subtraction schemes:

Antenna subtraction

- complete pheno for X+ jet @NNLO
- full-colour dijet@NNLO [Chen, Huss, Gehrmann, Glover, Mo '22]
- automation for 3-jets, gluonic case [Chen, Huss, Gehrmann, Glover, Marcoli '22]
- first ingredients for N³LO antennae from inclusive colour-singlet decays at N³LO [Chen, Jakubčík, Marcoli, Stagnitto '23]

Sector-Improved Residue Subtraction (Stripper)

A central goal of the present work is to demonstrate the feasibility of three-jet hadron collider computations with NNLO precision.

On the technical side, the enormous computational cost of the present calculation ($\sim 10^6$ CPUh) makes it clear that further refinements in the handling of real radiation contributions to NNLO calculations are desirable. [Czakon, Mitov, Poncelet '22]

Federico Buccioni LHCP 22/05/2023

Selection of recent phenomenological studies

Fixed-order predictions: 2→3 massless (aka jets) @ NNLO

Outlook: diphoton+ jet + qT \rightarrow diphoton@N³LO

Rich and interesting pheno: 3-jets

Jet rates

$$R_{3/2}(X, \mu_R, \mu_F) = \frac{\mathrm{d}\sigma_3(\mu_R, \mu_F)/\mathrm{d}X}{\mathrm{d}\sigma_2(\mu_R, \mu_F)/\mathrm{d}X}$$

Event shapes @ LHC

$$R_{3/2}(X, \mu_R, \mu_F) = \frac{d\sigma_3(\mu_R, \mu_F)/dX}{d\sigma_2(\mu_R, \mu_F)/dX} \qquad T_{\perp} = \frac{\sum_i |\vec{p}_{T,i} \cdot \hat{n}_{\perp}|}{\sum_i |\vec{p}_{T,i}|} \quad T_m = \frac{\sum_i |\vec{p}_{T,i} \times \hat{n}_{\perp}|}{\sum_i |\vec{p}_{T,i}|}$$

Impressive progress on $2\rightarrow 3$ cross sections:

- three-photons [Chawdhry, Czakon, Mitov, Poncelet '19] [Kallweit, Sotnikov, Wiesemann '20]
- diphoton+jet: qq/qg [Chawdhry, Czakon, Mitov, Poncelet '21]
- diphoton+ jet: 99 [Badger, Gehrmann, Marcoli, Moodie '21]
- dijet+photon: [Badger, Czakon, Hartanto, Moodie, Peraro, Poncelet, Zoia '23]
- three-jets: [Czakon, Mitov, Poncelet '21]

three-jet production

[Czakon, Mitov, Poncelet '22] [Alvarez, Cantero, Czakon, Llorente, Mitov, Poncelet '23]

Fixed-order predictions: 2→3 associated productions @ NNLO

[Hartanto, Poncelet, Popescu, Zoia, '22]

[Buonocore, Devoto, Kallweit, Mazzitelli, Rottoli, Savoini '22]

- mb=0: no large $log(m_b/p_T)$, but flavour tagging non-trivial
- mb≠0: flavoured jet tagging unambiguous, potentially large log(m_b/p_T)

4FS vs 5FS:

generally good agreement, 4FS lower cross-section improved by change of scheme: PDFS + $\alpha_{\rm S}$

2L amplitudes:

- W+bb (m_b ≠0): Wbb (m_b=0) + "massification" $\epsilon^{-1}_{coll} \rightarrow log(m_b/Q)$
- ttH: 2-loop tt + soft Higgs, p_H → 0

qT soft-function for 2 massive radiators recoiling against X

ttH @ NNLO

σ [pb]	$\sqrt{s} = 13 \mathrm{TeV}$	$\sqrt{s} = 100 \mathrm{TeV}$
$\sigma_{ m LO}$	$0.3910^{+31.3\%}_{-22.2\%}$	$25.38^{+21.1\%}_{-16.0\%}$
$\sigma_{ m NLO}$	$0.4875^{+5.6\%}_{-9.1\%}$	$36.43^{+9.4\%}_{-8.7\%}$
$\sigma_{ m NNLO}$	$0.5070(31)_{-3.0\%}^{+0.9\%}$	$37.20(25)^{+0.1\%}_{-2.2\%}$

[Catani, Devoto, Grazzini, Kallweit, Mazzitelli, Savoini '23]

see J. Mazzitelli's talk (Fri)

t, 4FS lower cross-section see G. Stagnitto's talk on flavour tagging

Federico Buccioni

LHCP 22/05/2023

10

N³LO for colour singlet: fully differential predictions

Higgs production at N³LO [Chen, Gehrmann, Glover, Huss, Mistlberger, Pelloni '21]

Higgs+jet@NNLO + Projection 2 Born

relies on calculation of incluse Higgs rapidity distribution [Dulat, Mistlberger, Pelloni '18] Run-time is that of a Higgs+jet@NNLO Highly efficient

$$\begin{array}{ll} p_{\mathrm{T}}^{\gamma_{1}} > 0.35 \cdot m_{\gamma\gamma} & \text{reject} \quad 1.37 < |y^{\gamma}| < 1.52 \\ p_{\mathrm{T}}^{\gamma_{2}} > 0.25 \cdot m_{\gamma\gamma} & \text{photon isolation in} \quad \Delta R < 0.2 \\ |y^{\gamma}| < 2.37 & \hookrightarrow \sum_{\Delta R_{i\gamma} < 0.2} p_{\mathrm{T},i} < 0.05 \end{array}$$

Product cuts on photons pT [Salam, Slade '21]

$$\sqrt{p_{\mathrm{T}}^{\gamma_1} p_{\mathrm{T}}^{\gamma_2}} \ge 0.35 \cdot M_{\mathrm{H}}$$

11

N³LO for colour singlet: fully differential predictions

N³LO predictions for vector boson production: W/Z

V+ jet @ NNLO + q_T to achieve N^3LO

to guarantee good stability + insensitivity to slicing cut: few million CPU hours

[Chen, Gehrmann, Glover, Huss, Yang, Zhu '22]

Transverse mass + charge asymmetry

Z@N³LO + Resummation

Resummation is crucial for reliable description of transverse observables

more in T. Neumann's talk (Fri)

Federico Buccioni erc

LHCP 22/05/2023 12

PDFs and four-loop splitting functions

For consistent N³LO predictions: N³LO PDFs are needed

see Cruz-Martinez's talk for status on PDFs

First approximate N³LO PDFs set [J. McGowan, T. Cridge, L. A. Harland-Lang, R. S. Thorne '22]

see G. Zanderighi's talk for pheno discussion

$$Q^{2} \frac{\mathrm{d}f_{i}(x,Q^{2})}{\mathrm{d}Q^{2}} = \frac{\alpha_{s}}{2\pi} \int_{x}^{1} \frac{\mathrm{d}z}{z} P_{ij}(\alpha_{s},z) f_{j}\left(\frac{x}{z},Q^{2}\right)$$

$$Q^{2} \frac{\mathrm{d}f_{i}(x,Q^{2})}{\mathrm{d}Q^{2}} = \frac{\alpha_{s}}{2\pi} \int_{x}^{1} \frac{\mathrm{d}z}{z} P_{ij}(\alpha_{s},z) f_{j}\left(\frac{x}{z},Q^{2}\right) \qquad P_{ij}(\alpha_{s},z) = P_{ij}^{(0)}(z) + a P_{ij}^{(1)}(z) + a^{2} P_{ij}^{(2)}(z) + a^{3} P_{ij}^{(3)}(z) \qquad a = \frac{\alpha_{s}}{2\pi}$$

 $i=g, q, \bar{q}$

Federico Buccioni

Effectively a 4-loop calculation

N³LO splitting kernels

Problem conveniently formulated in Mellin space:

$$\gamma_{ij}^{(k)}(N) = -\int_0^1 x^{N-1} P_{ij}^{(k)}(z) \quad ----$$

work very hard —

Inverse Mellin transformation to get result in z-space

PDFs and four-loop splitting functions

For consistent N³LO predictions: N³LO PDFs are needed

see Cruz-Martinez's talk for status on PDFs see G. Zanderighi's talk for pheno discussion

First approximate N³LO PDFs set [J. McGowan, T. Cridge, L. A. Harland-Lang, R. S. Thorne '22]

$$Q^{2} \frac{\mathrm{d}f_{i}(x,Q^{2})}{\mathrm{d}Q^{2}} = \frac{\alpha_{s}}{2\pi} \int_{x}^{1} \frac{\mathrm{d}z}{z} P_{ij}(\alpha_{s},z) f_{j}\left(\frac{x}{z},Q^{2}\right) \qquad P_{ij}(\alpha_{s},z) = P_{ij}^{(0)}(z) + a P_{ij}^{(1)}(z) + a^{2} P_{ij}^{(2)}(z) + a^{3} P_{ij}^{(3)}(z) \qquad a = \frac{\alpha_{s}}{2\pi}$$

$$i = g, \ q, \ \bar{q}$$
N³LO splitting kernels

Effectively a 4-loop calculation

N³LO splitting kernels

13

Problem conveniently formulated in Mellin space:

$$\gamma_{ij}^{(k)}(N) = -\int_0^1 x^{N-1} P_{ij}^{(k)}(z) \qquad \qquad \text{work very hard} \qquad \qquad \textbf{hord} \qquad \qquad \textbf{hord} \qquad \qquad \textbf{to get result in z-space}$$

Methods to get the anomalous-dimension:

- Forward Compton scattering $\gamma(q) + p(k) \rightarrow \gamma(q) + p(k)$
- Renormalization of twist-2 operators/ Operator Matrix Elements (OMEs)

Promising approach in covariant gauge

[Gehrmann, von Manteufell, Yang '23]

Federico Buccioni

Current status and results:

- (Non-)singlet Pqq large nf [Davies, Ruijl, Vogt, Ueda, Vermaseren '16] [Basdew-Sharma, Pelloni, Herzog, Vogt '22]
- Non-singlet P_{qq} large N_c + approx. subleading [Moch, Ruijl, Ueda, Vermaseren, Vogt '1
 Pure singlet P_{qq} [Falcioni, Herzog, Moch, Vogt '23] Vermaseren, Vogt '17]

basically complete the calculation of Page

Summary and outlook

Fast and steady progress on fixed-order predictions

Large class of processes are now accessible with higher than NLO accuracy

New studies for processes with diverse and high-multiplicities at higher order published monthly

Take-home regarding methods:

- ✓ Great progress on multiloop amplitudes for massless processes, enablig broad pheno studies
- ✓ Subtraction methods can now address any signature. Slicing is pushing the N³LO frontier
- × Multiloop amplitudes with many scales are hard. Current bottleneck, need efficient, modern numerical methods
- X Story not yet over for subtraction: high-jet multiplicities or N³LO slicing very expensive. Lots of room for improvements

Outlook: selected suggestions on what to expect for the near future:

and farther future:

- Zbb@NNLO (same technology as Wbb)
 Jet cross sections @N³LO
- Colour singlets @N³LO: ZH, WH and γγ

But clever ideas are around the corner!

14

Federico Buccioni LHCP 23/05/2023