Anomaly Detection in Particle Physics

Katherine Fraser

Department of Physics
Harvard University
and NSF |AIFI
kfraser@g.harvard.edu

i

LHCP 2023



Why anomaly detection?

Typical Searches

¢ | ooking for a
specific, physics
motivated signal

¢ Maximum sensitivity
for a specific model

e Not useful for other
models

Anomaly Detection

e Goal is to be model
agnostic

e | ooking for deviations
from background only

e | ess sensitive to any
specific model, but
can look for multiple
different models

e Can be at the event
level, but not always
(ex. jets)




Community Interest

There is substantial
community interest, including
through challenges:
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[Kasieczka et al: 2107.02821,
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and many papers:

+ Anomaly detection.

Learning New Physics from a Machine (DOI]
Anomaly Detection for Resonant New Physics with Machine Learning [0O1]

Extending the search for new resonances with machine learning [DO/]

Learning Multvariate New Physics [DOI]

Searching for New Physics with Deep Autoencoders [DOI]

QCD or What? (001}

Arobust anomaly finder based on autoencoder

Variational Autoencoders for New Physics Mining at the Large Hadron Collider [DOI)
Adversarially-trained autoencoders for robust unsupervised new physics searches [DOI)
Novelty Detection Meets Colider Physics [0O1)

Guiding New Physics Searches with Unsupervised Learning [0O1)

Does SUSY have friends? A new approach for LHC event analysis [DOI]

for in high energy physics
Uncovering latent jet substructure [DOI]

Simulation Assisted Likelinood-free Anomaly Detection [DOI]

Anomaly Detection with Density Estimation [DOI)

A generic anti-QCD jet tagger [DOI]

Transferabiiity of Deep Learning Models in Searches for New Physics at Colliders [DOI]

Use of a Generalized Energy Mover's Distance in the Search for Rare Phenomena at Colliders [DOI)
Adversarially Learned Anomaly Detection on CMS Open Data: re-discovering the top quark [DOI]
Dijet resonance search with weak supervision using 13 TeV pp collisions in the ATLAS detector [DOI)
Learning the latent structure of collder events [DOI]

Finding New Physics without learning about it: Anomaly Detection as a tool for Searches at Colliders [DOI)
Tag N' Train: A Technique to Train Improved Classifiers on Unlabeled Data [DOI)

Variational Autoencoders for Anomalous Jet Tagging

Anomaly Awareness

Unsupervised Outlier Detection in Heavy-lon Collisions

Decoding Dark Matter Substructure without Supervision

Mass Unspecific Supervised Tagging (MUST) for boosted jets [DO1)

Simulation-Assisted Decorrelation for Resonant Anomaly Detection

Anomaly Detection With Conditional Variational Autoencoders

Unsupervised clustering for collider physics

Combining outier analysis algorithms to identify new physics at the LHC

Quasi Anomalous Knowledge: Searching for new physics with embedded knowledge

Uncovering hidden patterns in collder events with Bayesian probabilistic models

of new physics estimation

[https://iml-wg.github.io/HEPML-LivingReview/]
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Two Types of Anomaly Detection
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https://arxiv.org/abs/2109.00546
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Autoencoders (AESs)

AEs work by learning compression to a latent space which
preserves the original information.

[Hajer et al: 1807.10261]
. . . . [Heimel et al: 1808.08979]
The reconstruction fidelity gives an anomaly score. [Farina etal: 1808.08992]

Variational AEs (VAEs) add a
stochastic component by having
the decoder sample from latent
space. There are multiple different
choices for anomaly score.

[Cerri et al: 1811.10276]

[Hajer et al: 1807.10261, Roy, Vijay: 1903.02032, Cheng et al: 2007.01850, Beekveld et al: 2010.07940, Batson

et al: 2102.08380, Finke et al: 2104.09051, Govorkova et al: 2108.03986, Collins: 2109.10919, Fraser et al:
2110.06948, Ngairangbam et al: 2112.04958, Dillon et al: 2206.14225, Roche et al: 2304.03836,...]
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Using Optimal Transport (OT)

e OT is a more physical alternative to ’ =
look for outliers. o
E
e OT is the minimum “effort” required i
to transform one event into another. R I
Ex: Energy Movers Distance (EMD).
[Komiske et al: 1902.02346, 2004.04159] I S
. Example OT Plan
e Can turn into an anomaly score by | Jomiske et al: 1802.02346)
picking reference samples. Ex: | Comemtiodr 08
. . /al QCD Loss = 5.72e-05
average/medoid jets, reference S
events. o et ai: 2006.00008] &
[Fraser et al: 2110.06948] S 4
[Buss et al: 2202.00686] = 9

e For reference jets, correlated with
VAE latent space distances. 0

[Fraser et al: 2110.06948]

10
FEuclidian L.S. Distance

Correlation with VAE latent space
[Fraser et al: 2110.06948]
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Challenges with Outlier Detection

1. It's difficult to pick a metric to compare methods.
[Ostdiek et al: 2105.14027]

2. lIdeal optimization (input representation, architecture) is
sensitive to signal. Signal sensitivity can be much weaker
than supervised searches. Jawahar ot i 211006300

3. Results are strongly dependent on background.

[Finke et al: 2104. 09051]

4. Not invariant under feature space transformations.
[Kasieczka et al: 2209.06225]

5. Unclear how to use selected events for analyses without a
reliable background estimate.

Outlier detection has potential to be especially useful for
triggering, so we would like to resolve these problems!

[Govorkova et al: 2107.02157, 2108.03986, Duarte et al: 2207.07958]



Solving (Some) Problems with Outlier Detection

e \Weakly-supervised approaches using exposure to outliers/
potential signals (examples: OE-VAE, QUAK, OT with multiple

SampleS) [Cheng et al: 2007.01850, Khosa, Sanz: 2007.14462, Park et al: 2011.03550,
Gonski et al: 2108.13451, Fraser et al: 2110.06948, Caron et al: 2207.07631]

e Engineering better networks
with less background
BI I: 1905.10384
dependence [[F?nnkceeeettae:: 2104. 09051}
[Dillon et al: 2206.14225]
e Picking smarter (self-

supervised) representations
[Buss et al: 2202.00686]
[Park et al: 2208.05484]
[Dillon et al: 2301.04660]

e Using multiple decorrelated
AEs and the ABCD method to

get a background estimate.
[Mikuni et al: 2111.06417]

>
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[Park et al: 2011.03550]
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The CWOLA Bump Hunt

CWOLA is weakly
supervised classification:

e Trained on two data samples
with different signal fractions

e Classifier is also optimal for
distinguishing signal vs
background because optimal
classifier is the likelihood ratio

Mixed Sample 1 Mixed Sample 2

O0eeG6 | ©0GO®
OO0 | | ©OGOG
OOOO® | | ©GGO®
OO0 | | ©OGO®
@66 | | 060Ce®

I Classifier l

CWOLA can also be used for a

weakly supervised bump hunt:

e Train a classifier between signal
region and side bands

e Apply a threshold cut on the
classifier output and perform a bump

hunt

dN/dmres

background

signal /
\J

Mres

[Image: Ben Nachman Talk]

[Metodiev et al: 1708.02949]

[Collins et al: 1902.02634]



Improving Unsupervised Bump Hunts

e ANODE: interpolates
probability densities from
sidebands to the signal-region
& constructs likelihood ratio

[Nachman, Shih: 2001.04990]

e CATHODE: samples from the
background model in signal
region after interpolating and
estimates likelihood ratio with
classifier [Hallin et al: 2109.00546]

e LaCATHODE: Use a flow to
perform CATHODE in latent
Space [Hallin et al: 2210.14924]

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

log(counts)
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AR
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£
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[Hallin et al: 2210.14924]
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More Unsupervised Bump Hunts

e SALAD: Reweight simulation to NERE
match sidebands, then Nl
interpolate into the signal PV AN
region and use a second /o !
classifier to get the likelihood e
ratIO [Andreassen et al: 2001.05001] L (m i) Vi

{zi}z’_*ﬁ{é}‘
Y S s
e CURTAINS: Train an invertible CURTAINS

neural network conditioned on (Raine etal 2205094701

mass to map between
Sidebands [Raine et al: 2203.09470]

e FETA: Map simulation to data

in sidebands, then compare to V4 e
SR data [Golling et al: 2212.11285] [Golling et al: 2212.11285]




Methods for Both Resonances and Tails

Some strategies can

be used for both INPUT OUTPUT
types Of anomaly la?ta sample D ) D!ist. log ratio m
detection. : < |

} |
J
[D’Agnolo, Wulzer: 1806.02350]
[De Simone, Jacques: 1807.06038]

AN 1
data/reference
B ¥ B T ]

e )

Test statistic ¢
computed on the
data sample D

N (D) = 2 Min L|f]

Reference sample R

However, these are j “ MMMMHWHV —

often strongly w
dependent on

1 I L ing New Physics fi Machi
simulation because **[D'Agnolo, Wolzor. 1806.02360]
they are directly
comparing to it



_______________________________________________________
Summary

Anomaly detection can either search for resonant signals
(overdensities) or non-resonant signals (outliers).

There are general challenges with outlier detection, though
some of these challenges can be overcome with
engineering. Outlier detection is potentially useful for
triggering.

There are many methods for unsupervised bump hunts that
are complementary for different data sets and resonances.

There is substantial ongoing work in anomaly detection, and

its exciting to see it starting to be used in experimental

[ATLAS: 2005.02983, ATLAS-CONF-2022-045, ATLAS-CONF-2023-022,
resu |tS ) CMS-DP-2022-021, CMS-DP-2022-043....]



