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Highlights of last couple of decade’s experimental HEP Program

Super-Kamiokande
(Neutrino Observatory))

Japan, underneath mount Ikeno
First evidence of neutrino oscillation
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Large Hadron Collider
Tevatron (Particle Accelerator) (Particle Accelerator)
lllinois, USA Switzerland
Top quark discovery Higgs boson discovery

Large, complex datasets that pose a challenge to conventional
information processing systems — can Quantum Computing speed up

some computational tasks?
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Why Quantum?

A simple, yet powerful idea.
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... OUr subject of study is quantum Ny Ny
mechanical objects with some interesting % % %

behavior ...

such as entanglement,

superposition, interference

features that make it difficult to
simulate with current information
processing techniques (lattice QCD,
many-body problems).
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Quantum Computing Applications in High Energy Physics
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Quantum Machine Learning —_—

. . L fermionic/bosonic
o Supervised learning: Classification based on kernel

L degrees of freedom into
methods, optimization.

. . , , quantum system.
o Unsupervised learning: Generative modeling, data

K . / o Significant overlap with
augmentation.
kcondensed matter.

Bauer, C. W.,, et al Quantum Simulation for High Energy Physics, arXiv: e-Print: 2204.03381 [quant-ph]
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Quantum Computing Applications in High-Energy Physics
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The focus of this talk

methods, optimization.

o Unsupervised learning: Generative modeling, data

augmentation.
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Quantum Machine Learning

The main goal of Quantum Machine Learning (QML) is to apply what we know from quantum computing to
machine learning

Linear algebraic
problems
Kernel methods

Optimization

Machine
Learning

Deep quantum
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learning

Can we speed up some tasks, better
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How do QML models compare to ML models?

A quantum circuit with quantum
gates that rotate or entangle

e ———

jsel
jsel

Benedetti, arXiv:1906.07682

In both cases, learning describes the process of iteratively updating the model’s parameters towards a goal
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Quantum Machine Learning in the NISQ Era

* Motivated by access to cloud-based NISQ processors and
commercial applications.
* Developed for deployment on Noisy Intermediate-Scale
Quantum (NISQ) devices.
o Few qubits,
o Noisy,
o Low gate fidelity - limits the number of operations that can be
executed.
* Applications in Quantum Machine Learning (QML) spurred by the
release of Xanadu's PennylLane / Google's Tensorflow.
* Co-design:
o Algorithmic development/research is adapting to match the pace of
hardware development.
* Hybrid frameworks to leverage benefits of both classical and

quantum computing - variational quantum circuits.
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Parameterized Quantum Circuits as ML Models

Benedetti, arXiv:1906.07682

Parameterized Quantum Circuit

M,
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Parameterized Quantum Circuits as ML Models

Parameterized Quantum Circuit

How to encode data into

a quantum state?
|O>®n
/ Pre-processing \
Input: @ ~ Pp |0>®m

x —» oO(x)

&

1
2.

3.

Start from a feature vector x.

Optional: dimensionality reduction, PCA, etc.
Quantum embedding through a quantum
feature map: Basis embedding, amplitude

embedding.
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Benedetti, arXiv:1906.07682
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= )" Post-processing
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k=1

* Havlicek, et al, arXiv:1804.11326
* Schuld, Killoran, arXiv:1803.07128
* Lloyd, Schuld, et al, arXiv:2001.03622
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Parameterized Quantum Circuits as ML Models

Benedetti, arXiv:1906.07682

Parameterized Quantum Circuit

4 N M,
|O> on = U¢(=B) = kel Post-processing
Pre-processing A Ug i -
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The “variational”, optimizable / ({ <Mk>“”o}k=1

part of the circuit.

The “guess” or trial function is the unitary U parameterized by a set of

free parameters 0 that will be updated during training.
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Parameterized Quantum Circuits as ML Models

Benedetti, arXiv:1906.07682

Parameterized Quantum Circuit
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Quantum information is turned back into classical information by The measurement output is then used to
evaluating the expectation value of an observable, or measurement. construct a decision function, a

probability distribution, a boundary, etc.
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Supervised Learning

Kernel Methods Quantum Machine Learning

How is this useful for HEP?
 Parameterized quantum circuits are
kernel methods. Feature

Encoding feature

map P map ¢
* Potentially more expressive models in Y g
.. . Access via kernel | (
QML, requiring less data to train. [ ] | manipulation | [ ] !
_______ \
Why quantum?

 When feature space become large, kernel functions
become computationally expensive to estimate.

Extensively studied in HEP applications

* Inthe form of parameterized quantum circuits trained for classification, clustering and anomaly
detection tasks.

e Applications in event reconstruction and classification, tracking, jet reconstruction and tagging ...

e Check out the arXiv pre-prints: [1908.04480], [2002.09935], [2010.07335], [2012.11560],
[2012.12177], [2103.12257], [2103.03897], [2104.07692], [2003.08126], [2007.06868],
[2012.01379], [2109.12636], and more.
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Unsupervised Learning

How is this useful for HEP?

* Generative models can act as surrogate to generate data similar to previous observations.

e Valuable tool when the underlying process which generated a given set of data is unknown
or poorly characterized, or when generating data has high overhead.

Why quantum?

* Projection onto a fixed basis maps the state prepared by a
circuit onto a set of classical bitstrings and yields a
probability distribution -> Easy to obtain new samples

/ Evaluate loss \
function on target

Extensively studied in HEP applications

LA |
* In the form of Quantum Generative Adversarial Networks % : ~_ =Dt stribution
(QGANSs) and Quantum Circuit Born Machines (QCBMs) for 3] - |2
anomaly detection, generative modeling, etc.
* Applications in data augmentation, detector simulation, I Frmeerupdse = litll. | | ' | 1
* Check out the arXiv pre-prints: [2112.04958], [2101.11132], [ — J "\ SEOELE UL B’y
[2110.06933], [2201.01547], [2203.03578], [2011.13934]. Optimization Gradientbase
optimizatio
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Quantum Computing for Data Analysis in HEP

* Lots of applications and use cases developed over the last couple of years.

* “Quantum computing for data analysis in HEP", Delgado, A., Hamilton, KIE.,

G- .HEP
’ .GHZz
« Uniform

arxXiv:2203.08805

i DLA rank (analytical)

!I T! Identifying transitions in

* Challenges to overcome:

* Noisy devices, limiting performance.
trainability landscape.
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* Circuit depth limited by coherence times. O s
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* Encoding of classical data into quantum states.

* Borrowing tools form classical ML to characterize quantum models

* Over/under parameterization. 5 it ;'4{'};“: i
=0 ""J”Im[;z:’ (AT
* Trainability - hardware noise. —»3"’“ 'm @]#‘Wﬁ-- # ERRERTRERPRBRRRR
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But also... can we re-evaluate our current HEP experiments?

Recent developments in quantum sensing has inspired novel ideas for dark

matter detection through quantum-enhanced techniques.
 Quantum sensors are able to detect very small changes in motion, electric and
magnetic fields.

NV centers in diamond

* Opeﬂ queStIOﬂS entanglerpent-enhanced

. COU[d they atomic sensors
complement BSM
searches at large-
scale facilities such as
the LHC?

« Can we couple QML
algorithms to these

interferometry

NV fluorescence

[PRX 10, 031003 (2020)]

precisions measurements with molecules

[Phys. Rev. Lett. 123, 231107 (2019)]
[Phys. Rev. Lett. 124, 171102 (2020)]

. ,P [Nature 588, 414 (2020)]
d evices: [arXiv:2106.03754 (2021)] =¥
¢ Oppo rtunities for co- : = : quantum sensing review:
. [Science 343, 269 (2013)]
d eS | g n [Nature 562, 355 (2018)] [Rev. Mod. PhyS. 89, 035002 (2017)]
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Thank you!

delgadoa@ornl.gov
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