TOWARDS
ZERO-WASTE COMPUTING

Ana-Lucia Varbanescu

a.l.varbanescu@utwente.nl
with contributions from
Quincy Bakker, Nick Breed @ University of Amsterdam

UNIVERSITY
OF TWENTE.

mailto:a.l.varbanescu@utwente.nl

Computing is everywhere ... and it's not free!

- Top 10 videos on YouTube* consumed as much as 600-700 EU persons per year

- Training Alpha-Zero for a new game consumes as much as 100 EU persons per year

- A mid-size datacenter alone consumes as much energy as a small town
- And that is not considering purchasing and secondary operational costs (e.g., cooling)

« In 2019 D N datacente ombined consumed 3-times more enerav than the
natio
™ The energy consumption of computing is substantial and

constantly increasing!
- The IC . . ALk Al AR s

*https://en.wikipedia.org/wiki/List_of most-viewed YouTube videos#Top_videos

Three types of stakeholders

Developers and users

Improve the energy efficiency
of their own codes, making use
of algorithmic, programming,
and hardware tools

Design and implement
applications able to adapt to
the available system resources

&

&

System integrators

Offer the right mix of resources
for the application developers
and system operators.

Include efficient hardware to
enable different application
mixes.

System operators

Ensure efficient scheduling
of workloads on system
resources.

Harvest energy where
resources/systems are
massively underutilized.

B ———
Agenda

- From performance to waste in computing

- Performance Engineering in a nutshell
- Is it really that complicated ?!

- A case-study for energy-harvesting

- Towards Zero-waste computing

GLASBERGEN

“Larry, do you remember where
we buried our hidden agenda?”

Performance vs. waste in computing

More performance!

- More speed => “higher performance”

- More pixels =

..« 0_ _ __ PR | -

This is inefficient!

I UVIN 7\ 1Ud, vilv v Ad UUIIIPUL\JI SUuUiLvIiIlLiol .

Waste in computing

Unneccesary time (or energy) spent in (inefficient)
computing iIs compute waste.

We all can and must improve software and hardware

efficiency to minimize waste in computing!

To reduce compute waste, we must shift from
time-to-solution towards efficiency-to-solution

Why is compute efficiency challenging”?

It is a nonfunctional requirement
Focuses on user-“irrelevant” issues like resource utilization, scalability, ...
We all make a lot of excuses

'tS_S ... and new applications and new computing systems
It's | emerge monthly ...

It's easy to fix later
It’s “just engineering”
Requires effort,
and there’s (often) little glory in it.

DON'T
TOUCH!!!

Reducing waste in computing

Raise awareness
- Quantify (energy) efficiency
- Quantify waste

More efficient

D
Fl
Improve compute efficiency THIS WAY UP

- Improve systems for the applications at hand I

- Improve applications for the systems at hand
- Make applications more efficient

- Make applications share systems Q =

- Co-design applications and systems

Less efficient

Introducing performance engineering

Today's approach to high-performance

Physicist T T T mmmmmmm———————— = ~
_——y ——————————————————————————— ~ /, \\
\ 7/ CEE—— \
v/ O -=] Final
Bob Application |_:H O code
specification Draft code fast 11 110

Performance engineering is a systematic, quantitative
approach for cost-effective design and development of
software systems that meet performance requirements.

onfinl

Performance
Performance engineering provides*® analysis
methods and automated® tools to help performance-aware

software design and development for most users.) Eerfl?rmance A
) dacker /’

Alice | *Wishful thinking included...

‘-----

slow

-------------_’

- -

Systematic approach?!

gl MAP

=2 You A'\L L.QST
IF You kndw THE \WAY

ouT, PLeASE. MARK \T oN
THE MAP. THANK You.

Brainstuc.k c.om

Systematic | iterative... 600D CODERS. .

1. Capture requirements S ar oty THAT DO

WORK EITHER.
AND NOW?

2. Monitor performance
(micro)benchmarking & hardware counters
3. Analyze feasibility
Performance modeling

4. Design and implement new algorithms
Parallel/distributed computing languages

5. Maximize code performance
Tool design and development

6. Document results
Metrics, visualization, user-interaction

--- KNOW WHAT THEY'RE DOING

Improving systems
for the applications

at hand.

‘ Nick Breed

Quincy Bakker

Case-study:
Energy harvesting in heterogeneous systems

Heterogeneous systems?

- A heterogeneous system = a CPU + a GPU (the starting point)
- An application workload = an application + its input dataset

- Workload partitioning = workload distribution among the processing units of a
heterogeneous system

How do we improve energy efficiency? Workload partitioning!

How do we improve energy efficiency? Energy harvesting!

Thousands of Cores

!!H—!oun!
(Matrix Multiply)

Energy harvesting

- Basic assumptions
- Tasks run on different processors

[—400

" —600

Energy Savings (Joules)

- Idle processors waste energy
- Higher/lower operating frequencies c o
- => more/less power respectively oo g
- => reduce or increase runtime respectively 106%3;‘26 N o ::a‘e«\e“ﬂ
T e e CPU-bound
Saves Energy
- Opportunities (K-Means)
1 . ;' ..’ .=:°
- Dynamic Voltage and Frequency Scaling (DVFS) "“!g;;ﬁ;g{?g{g&.&,% .
aalinsstt it ottt [0 8
992l T3 :%:..”o ° 1002

- Reducing operating frequencies in idle states may save ener¢ %' il
- No active task => no runtime increase g 2oy

- Increasing operating frequencies in busy states may save ene
- Lower runtime => less time to consume energy q

| | |
N N
U S O
o o o
rgy Savin

Approach

- Framework to monitor and improve the energy consumption of
heterogeneous applications
- Analyze application at runtime
- Use live execution data
- Determine application states
- CPU/GPU-utilization patterns Analyze application
- Apply DVFS for this phases
- Observe energy changes

- Design policies to maximize energy consumption
- What, when, and how to apply DVFS

|dentify phases

Policies for energy Select and apply
harvesting “right” frequency

State detection

- Monitoring framework
- Records performance variables: e.g., utilization rate, clock rate, ...

- Application state detection based on processor utilization and application events

- 5 states of interest
- CPU/GPU/BOTH IDLE
- ALL BUSY
- CPU BUSY WAIT

- State detection library
- Detects all 5 different states every 10ms

States of interest

Yes

High Sync.
Active

GPU
Utilization

Utilization

Utilization

No
Low

From States to Actions

- Detected states are used to trigger energy harvesting actions

- Different states trigger different actions
- E.g., CPU_IDLE triggers the “lower CPU frequency” action

States

IDLE

GPU_IDLE

CPU_IDLE I I

CPU_BUSY_WAIT

13:50:05 13:50:10 13:50:15 13:50:20
Timestamp

* Graph shows one execution of Matrix Multiply sourced from the NVIDIA CUDA Toolkit v10.2

From States to Actions

current state

- Busy states => increase the frequency
- ldle states => decrease the frequency

1e9

uuuuuuuu

States

States

uuuuuuuu

uuuuuuuuuuuuu

13:50:20

Energy harvesting actions change the operating frequencies based on the

Clock Rate
2,601,000,000 __:__ gzld?)g:‘reo
RN i i iwin
2.0
z
51.5- rﬁ. o—bﬂ H U- yta hmbw H*‘ th Eﬂ h* rﬂwd\ d., 1,380,000,000
g 1.0 - l ! Ly ~ \l\ f; \‘ | ",‘ ‘}‘ ‘.‘ u |
\ [| | | |
0.5 - 1 '\ f l\ [' \‘ " | |
& =| 4 ¥ 3 3 ! [| | 1 :
4]
o0 13:50-05 13:50:10 13:50:15 13:50-20

Timestamp

_ -
GPU_IDLE
cPu_IDLE

From States to Actions

- Changing operating frequencies affects power consumptic.
- Lower frequencies reduce power consumption :

Power Consumption (W)

300 -

250

200

150 A

ssssss

States

B . 3 L) s

Power Consumption

WEIEHANIIGIRNATY

13:50:05 13:50:10 13:50:15
Timestamp

13:50:20

—e— CPUO

CPU 0 Core 0
—~o— GPUO
—e— Node

162.298787

49.86598
26.703102

Empirical analysis

- Workload: 10 different applications from different benchmarking suites
- System: Geforce GTX 960 GPU and an AMD Ryzen 7 3700x CPU.
- Metrics of interest: runtime and energy consumption

- Reference implementation = “do nothing”
- Gain and/or loss against reference

- Five policies :
- Maximum Frequency
- System
- MinMax
- Ranked MinMax
- Scaled MinMax

Results

~Policy
Applications No Action MinMax System Maximum frequency Ranked MinMax Scaled MinMax
Energy Time Energy Time Energy Time Energy Time Energy Time Energy Time
Prs 521871 | coss | 649977 | 706s | 5669.3J | 60.7s | 621627 | 60.2s | 520437 | 6L2s | 549637 | 70.8s
' ' (23.8%) | (16.7%) | (8.0%) | (15.2%) | (19.6%) | (-0.5%) | (09%) | (1.2%) | @.7%) | (17.0%)
Myocyte

69624 J | 52.6s | 7024.6J | 52.3s | 74735J | 51.0s | 6951.1J | 529s | 71250 | 53.8s

govaMD M543 16218 | 66%) | (1.0%) | (58%) | (04%) | (03%) | (21%) | (-6.8%) | (15%) | (-44%) | (3.3%)
- 61033 7 | 640 | 64655 | 77.0s | 713277 | TAls | 7187.6J | 704s | 561907 | 785s | 56356J | 825s
: : (5.9%) | (18.6%) | (16.9%) | (142%) | (27.6%) | (8.5%) | (-7.9%) | (21.0%) | (-7.7%) | (27.1%)

. 92451J | 99.6s | 100288J | 96.9s | 10301.2J | 91.5s | 76664J | 1028s | 75784J | 107.6 s
Particlefilter-float | 85408 | 89.5s | “gooy | (11.3%) | (17.4%) | (83%) | (20.6%) | (22%) | (-10.2%) | (14.8%) | (-11.3%) | (20.2%)
7 P | 62480J | 77.0s | 6303.4J | 744s | 6633.3J | 665s | 55144J | 689s | 59322J | 77.9s
s ; 481 (91%) | (16.3%) | (10.0%) | (124%) | (15.8%) | (0.5%) | (-3.8%) | (4.1%) | (3.5%) | (17.7%)

: 5957.7J | 54.0s | 6128.0J | 523s | 6165.4J | 51.0s | 60295J | 535s | 60049J | 54.7s

i adwideh 6337.7J 19048 | (60%) | (7.1%) | (-33%) | (38%) | (27%) | (12%) | (-49%) | (62%) | (-5.3%) | (8.5%)
: 78612.8 J | 263.1s | 32491.1J | 257.5s | 34542.5 J | 2584 s | 27956.7J | 262.5s | 27810.9 J | 258.6 s
UnifiedMemoryPerf | 33188.3 J | 266.1s | g 00y | (1.1%) | (-21%) | (-32%) | (41%) | 2.9%) | (-15.8%) | (-1.4%) | (-16.2%) | (-2.8%)
. — 02956 1 | 6.6 | 104423 [67.6s | 100628 | 67.0s | 10086.7J | 665s | 10913.3J | 675s | 102643J | 68.0s
' ' (12.3%) | (1.5%) | (17.9%) | (06%) | (8.5%) | (-0.2%) | (174%) | (1.4%) | (10.4%) | (2.1%)

. n 7802.1J | 12465 | 8192.6J | 128.0s | 8039.1J | 109.0s | 89580 J | 109.3s | 84403 J | 124.8 s
Jacobi unoptimized | 109804 J | 11815 | o5 900y | (5.5%) | (-25.4%) | (84%) | (26.8%) | (7.7%) | (-18.4%) | (-7.5%) | (-23.1%) | (5.7%)
— 5467.1J | 101.9s | 5280.8J | 101.4s | 5021.9J | 858s | 60909J | 86.6s | 54004 J | 102.1s
Jacobi optimized | 7697.20 | 9535 | (09 007y | (6.9%) | (-31.4%) | (64%) | (-34.8%) | (-10.0%) | (-20.9%) | (9.1%) | (-20.8%) | (7.1%)

Results

-

s

Best Pol{cy

Applications Single Core Multi Core
Name Energy | Time Name Energy | Time
Scaled SR G Ranked é "
BFS . -0.5% 0.2% Vi 0.9% 1.2%
LavaMD %i:z;‘;‘f; 0.7% | -01% | MinMax | -6.6% | 1.0%
Ranked o0 o Ranked . .
NW Nk Lo 4.8% 4.4% NN -7.9% 21.0%
i Ranked i % Ranked « e
= - D70 - 2% 4.8%
Particlefilter-float MinMaxe | 20 L5% | \inMax 10.2% | 14.8%
Ranked o7 o7 Ranked i o
Kmeans MinMax | 37 7o 0.6% MinMax | 38% | 41 7o
Bandwidth Mo \ooalt | 0l | o oeedl | po¥)
Frequency Frequency
UnifiedMemoryPerf | MinMax | -1.5% | -3.8% | 5 | 1600 | -2.8%
MinMax
matrixMul St st 3.5% -0.0% e 8.5% -0.2%
Frequency Frequency
PRELL MinMax | -3.5% | -7.4% | Meximum | o5 o0 | 779
unoptimized Frequency
kol MinMax | -2.7% | -0.4% | Maximum | g, g | 10.0%
optimized Frequency

Contributions & Lesson learned

- Heterogeneous computing => high performance, high energy consumption

- Energy harvesting can work
- Depends a lot on implementation

- More interesting question: Can we (/should we) explore trade-offs between
energy and performance ?
- Harvesting = how to keep performance fixed
- Energy budgets = how to maximize performance?

Git repository:
https://qitlab.qub1.com/vrije-universiteit/master-project/energymanager
Thesis:
https://qitlab.qub1.com/vrije-universiteit/master-project/thesis

https://gitlab.qub1.com/vrije-universiteit/master-project/energymanager
https://gitlab.qub1.com/vrije-universiteit/master-project/thesis

Improving systems
and applications

Co-design applications and systems

(Saée\s{l}dgﬁbﬁ-designing systems and applications

Today’s approach to high-performance

Physicist

Bob Application
specification

Draft code

‘-----

Performance
Performance engineering provides® analysis
methods and automated® tools to help performance-aware

software design and development for most users. Eerffrmance
dacker /’

-------------_’

Functional
requirements

]
4

/

N

4
P 4
g

/
Application |
specificatio :
l
i

Application
design

[)

:

A
-

‘--------

,/

/

I

i

i

i

i

i

i

’—--T----

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

I
Vo

i
i

i
i

i
i

i
i

i
i
i
i
I

i
i

i
i

i
1] o
| I-c
| -5
;10

1 &
19

1 —
I | O
I S5
P!

i
i

i
i

i
I

\
BN
--\

Automated -

{ code generation ':

Performance ! and tuning. /1

x~929i£‘§§r _________ i i

i !

: IO_I Final I

I - b |

i : l 01 €3 application ,

(An |deal) Future (VVIP) l 333‘30 Automated !
AN 01101 tools ./

To conclude ...

Take kyiyA/message
to-the-office

- Performance and energy footprint matter!

- Be aware of your computational footprint
- Ask yourself whether you can/want to do better/more

- Performance engineering
- Is a multidisciplinary research field,
- which provides methods and tools to understand and improve performance,
- and can reduce waste in computing.

- Automation and generalization are the core challenges in today’s
performance engineering

%
Zero-waste computing

- Awareness: utilizing computing resources with little efficiency is equivalent to
wasting computing.

- Performance and efficiency: non-functional properties, such as performance
and efficiency, are essential to understand computing waste.

- Design-time: performance/efficiency must be essential concerns, like
functionality

D0,

- Stakeholders: domain-specialists/application owners must (also) take&' SN

responsibility in reducing waste in computing. b;/w

77 A -
% & ()
\‘___‘ 0

To do: Zero-waste computing

- Design and development:

“Build the right computing system for the job at hand”
- Better hardware
- Design and modeling to build the right infrastructure
- Better software
- Performance and energy analysis is essential to improve efficiency
- Better tools
- For design, analysis, and modeling

- Awareness:

“Acknowledge and improve the efficiency of ‘generic’ systems”
- Better metrics
« To demonstrate the waste in computing

- Better methods
- To analyse the complex tradeoffs between performance, energy, QoS, ...

