Particle identification in ALICE and LHCb

LHCP conference 2023 — Belgrade, Serbia

Christian Sonnabend on behalf of the ALICE and LHCb collaborations

25.05.2023

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

GSI Helmholtzzentrum für Schwerionenforschung

Introduction

- Major upgrades during LS2 for ALICE and LHCb, in particular for PID detectors
 - Completely new sensors and readout chain in RICH detectors of LHCb
 - New TPC readout in ALICE GEMs replace the MWPCs
 - Replacing hardware triggers with software triggering minimum bias data collection!
- Goals until LS4: ALICE 200 pb⁻¹ pp and 13 nb⁻¹ Pb-Pb | LHCb 50 fb⁻¹ pp and 1 nb⁻¹ in Pb-Pb New algorithms to cope with higher luminosities and data rates

1) LHCb event display: https://cds.cern.ch/images/LHCb-PHO-GEN-2022-004-1 2) ALICE event display: https://cds.cern.ch/record/2841865?ln=en

Run 3 PID-detectors in ALICE and LHCb

1) LHCb schematic: <u>https://cds.cern.ch/record/1087860</u>
2) ALICE schematic: <u>https://cds.cern.ch/record/2263642</u>

Christian Sonnabend

RICH - Ring Imaging Cherenkov Detector

- Release of Cherenkov radiation when charged particles pass C₄F₁₀ (RICH1) & CF₄ (RICH2)
- Ultimate physics performance: separation between charged hadron species ($\pi^{\pm}, K^{\pm}, p^{\pm}, etc.$) purity vs. efficiency

1) & 2) PID performance of upgraded geometry: <u>https://cds.cern.ch/record/1624074/files/LHCB-TDR-014.pdf</u>

Christian Sonnabend

Particle identification in ALICE and LHCb

• Focusing radiation using mirror system and detection using multianode photomultipliers (MaPMT)

4

Calorimeters (ECAL & HCAL)

- Identification of hadrons (HCAL), electrons and photons (ECAL)
- Neural network based classification for photon identification
- For Run 3 calorimeter PID is running in first level triggering ullet

1) Graph based clustering: <u>https://doi.org/10.1140/epjc/s10052-023-11332-1</u>

2) & 3) Electron identification: https://cds.cern.ch/record/2773174

Christian Sonnabend

New graph-based clustering for Run 3: match performance of cellular automaton but much more efficient

Muon detectors

- 80 cm thick iron absorbers interleaved with sensitive readout panels (M2-M5) • Run 3 readout upgrade allows to run with the full event rate — no hardware triggering • Novel algorithms in Run 3 for HLT1 (χ^2_{corr}) and HLT2 (CatBoost) for purification of muon identification

1) - 3) Performance HLT1 and 2: <u>https://doi.org/10.1088/1748-0221/15/12/T12005</u>

Christian Sonnabend

Reconstruction in LHCb

Computing throughput – HLT2 reconstruction

LHCb Simulation

Seed tracking

4.0%

Downstream

4.8%

Converters

5.6%

Forward tracking

5.9%

Protoparticles

8.6%

RICH

8.6%

Calorimeter

18.8%

1) Performance graph: <u>https://cds.cern.ch/record/2773174</u>

Particle identification in ALICE and LHCb

Throughput = 153.7 events/s/node

TPC - Time projection chamber

- Gaseous detector (Ne-CO₂-N₂, 90-10-5 gas mixture), collects 97.5% of all raw data in ALICE
- PID via specific energy loss per unit distance dE/dx Bethe-Bloch with secondary corrections lacksquare
- Run 3: GEM-based readout —> 50 kHz readout rate, raw-data stream of up to 3.5 TB/s

ALI-PERF-542396

Christian Sonnabend

Particle identification in ALICE and LHCb

ALI-PERF-542850

TPC - Time projection chamber

- Novel PID procedure in Run 3

 - Neural network corrections for secondary effects and sigma estimation
 - Fully data-driven 6D corrections and sigma estimation (Run 3)

Christian Sonnabend

ALICE

Particle identification in ALICE and LHCb

- Hyperparameter optimisation for initial fit of Bethe-Bloch – a priori PID information not needed

TPC - Time projection chamber

ALICE

- Novel PID procedure in Run 3

 - Neural network corrections for secondary effects and sigma estimation
 - Fully data-driven 6D corrections and sigma estimation (Run 3)

- Hyperparameter optimisation for initial fit of Bethe-Bloch – a priori PID information not needed

TOF - Time-of-flight detector

- Particle identification using particle velocity and measured momentum
- Requires event time, particle arrival time at TOF, track path length

ALI-PERF-537607

Christian Sonnabend

Particle identification in ALICE and LHCb

• 3.7 meters from IP, 1593 strips multigap resistive plate chambers, 141 m² and -0.9 < η < 0.9 of coverage

ALI-PERF-528567

TOF - Time-of-flight detector

- Event time computed by forward detectors FT0 and TOF itself
- Comparison with FT0 detector nominal performance of the ALICE TOF detector lacksquare

ALI-PERF-542825

ALI-PERF-542829

Specialized detector systems

- TRD
- PHOS, EMCal, DCal Calorimetry
 - Electromagnetic and di-jet identification
- HMPID

ALICE

Christian Sonnabend

Particle identification in ALICE and LHCb

- Electron PID for γ > 1000 by transition radiation, Xe-CO₂ mixture, excellent tracking capabilities

Specialized detector systems

- MFT, MCH, MID
 - Muon identification at forward rapidity
 - MFT new in Run 3
 - Precision vertexing using ALPIDE MAPS silicon sensors
- ITS
 - Run 3: purely silicon pixels (ALPIDE MAPS)
 - Ongoing feasibility studies for PID
 - Excellent vertex resolution
- **FIT** new in Run 3!
 - Event multiplicity, centrality, reaction plane
 - Determination of collision time with ~20 ps precision

¹⁾ Muon forward tracker - TDR: <u>https://cds.cern.ch/record/1981898</u>

Conclusion

LHCb

- New algorithmic and hardware implementations for calorimeters and muon system
- PID efficiency is expected to match Run 2 and improve with higher statistics

ALICE

- New TPC readout and PID corrections will bring strong improvements compared to Run 2
- High precision of interaction vertex (space and time: ITS and FIT) will strongly enhance tracking

Thank you

BACKUP

Data processing for PID in ALICE

Computing

- Purely software triggering, online (synchronous) and offline (asynchronous) processing O^2
- Processing and compression of several events in timeframes (TF), PID selections in DPL

1) ALICE 02 TDR: https://cds.cern.ch/record/2011297/files/ALICE-TDR-019.pdf 2) CHEP talk – David Rohr, Giulio Eulisse: https://indico.jlab.org/event/459/contributions/12432/attachments/9414/14116/alice_o2_gpu_eulisse_rohr.pdf

• Completely new software framework — Combine detector operation, data processing and physics analysis

TOF event time determination – Run 2 and Run 3

Event time determination

Iterative procedure described in EPJP 132 (2017) 99 lacksquare

ALI-PERF-128066

ALI-PERF-542825

