

Higgs boson couplings at CMS

LHCP 2023

24th May 2023

Fabio Monti

on behalf of the CMS Collaboration

Context

exciting results!

Goal of Higgs boson measurements

Several open questions in particle physics call for a deeper understanding of the Higgs boson

Dark matter

Asymmetry of matter vs antimatter in the universe

Hierarchy of fermion masses

. . . .

- Test compatibility with SM
 - Precise measurements of the main H production XS and decay BR
 - Search for rare H (and HH) processes
- Measurement of H coupling to fermions and vector bosons
 - Probe possible BSM effects inducing deviations from SM
- Probe properties of the H potential from H self-coupling

H couplings to fermions & vector bosons

- fermionic coupling
- bosonic coupling

Main H production mechanisms at LHC

+ H(gg)

Mass of $H(\mu\mu)$ candidates after bkg subtraction

Mass of H(γγ) candidates after bkg subtraction

Mass of H(4ℓ) candidates

H self-couplings

 HH production XS's sensitive at LO to the Higgs trilinear coupling λ In SM $\lambda = m_H^2 / 2v^2$ with v H vacuum exp. value

ggF production (ggHH) diagrams at LO

- k_λ-dependent NLO electroweak corrections to H XS and BR
 - Modification of total and differential H XS's and H BR's

Examples of k_{λ} -dependent diagrams for single-H prod. mechanisms and H \rightarrow VV decay

Combination of Higgs boson measurements

 Combination of H production & decays ch's to reduce uncertainties & exploit ch's complementarity
 Relative SM H

Integrated lumi (fb ⁻¹)
138
138
138
138
36(ttH) 77(VH) 138(ggH)
138
138
138
138

 Main H production and decay channels covered with up to full Run 2 dataset (2016-2018)

Test XS and BR compatibility with the SM

- Good compatibility with SM for main H production & decay
- > Small excesses in μ_{tH} and in $\mu_{Z\gamma}$ —interesting to see with Run 3 data
- > Evidence of H→Zy from the CMS+ATLAS Run2 comb.!

Test XS and BR compatibility with the SM

CMS

138 fb⁻¹ (13 TeV)

CMS

138 fb⁻¹ (13 TeV)

Compatibility with SM of inclusive H cross section

```
\mu = 1.002 \pm 0.057 [\pm 0.036 (theory) \pm 0.033 (exp.) \pm 0.029 (stat.)]
```

- Systematics uncertainties crucial for H measurements today and even more in future
 - Reduce exp. uncertainties with new or improved approaches
 - Need of more precise theory predictions

- Good compatibility with SM for main H production & decay
- > Small excesses in μ_{tH} and in μ_{Z_y} —interesting to see with Run 3 data

kappa-framework

 Coupling modifiers k to quantify couplings deviations from SM predictions

Factorize deviations of H production XS's & decay widths

$$\sigma(i \to H \to f) = \sigma_i(\vec{\kappa}) \frac{\Gamma_f(\vec{\kappa})}{\Gamma_H(\vec{\kappa})}$$

Scalings inclusive XS's & partial decay widths

$$\sigma_i(\vec{\kappa}) = k_i^2 \cdot \sigma_i^{SM} \qquad \Gamma_j(\vec{\kappa}) = k_j^2 \cdot \Gamma_j^{SM}$$

$$\Gamma_H(\vec{\kappa}) = \frac{\sum_j \Gamma_j(\vec{\kappa})}{1 - BR_{BSM}}$$

In future possibility of constrain $\Gamma_{\rm H}$ from off-shell H production Nat. Phys. 18 (2022) 1329

H couplings to fermions and vector bosons

Likelihood scan of (k_f, k_V)

Compatibility with SM within 10%

H couplings vs particle mass

 Agreement with SM for masses within 0.1 - 200 GeV

H coupling to electrons and charm quark

- SM BR(H→cc) ≈ 2.9%
- Search for H→cc via ggH and VH mechanisms
- + Constraints on k_c from $\underline{p}_{\underline{T}}(\underline{H})$ ggH spectrum & $\underline{H} \rightarrow J/\psi + \chi$ search

m_{ee} distribution in a VBF enriched category

- Search for H→e⁺e⁻ via ggH and VBF
 - Peak search in the m_{ee} distribution
- Obs. upper limit on BR(H \rightarrow ee) at 95% CL of 3.0 · 10⁻⁴ \rightarrow 6 · 10⁴ × SM

H couplings under more general assumptions

 Assuming ggH, Hyy, and HZy effective couplings and accounting for invisible and undetected H decays

- \rightarrow p-value SM = 33%
- Stat. unc ≈ syst unc except for k_u and k_{Zy}
- Invisible and undetectable BR's compatible with SM
 - SM invisible: BR(H→ZZ→4v) ≈ 0.1

Constraints on the H trilinear self-coupling λ

- Constrain k_λ from combination of searches for HH in the most sensitive decay channels
 - More details in <u>S. Nandan talk</u>
- Constrain k_λ from combination of H measurements

k, measurement from HH or single-H

HH BR map with channels included in the combination

First CMS measurement of k_{λ} from single-H exploiting differential effects on XS

Constraints on HHVV coupling

- HH production via VBF sensitive to HHVV coupling c_{2V}
 - Tiny SM cross section (1.7 fb) but for $k_{2V} = 0$ large XS & large $p_T(H)$

m(HH) distribution of signal candidates in VBF HH(4b) cat's

 (k_{λ}, k_{2V}) likelihood scan from search for HH \rightarrow 4b in merged-jets final state

> $k_{2V} = 0$ excluded at $>5\sigma$ assuming $k_{\lambda} = k_{t} = k_{V} = 1$

 $> k_{2V} = 0$ excluded at $> 3\sigma$ for any value of k_{λ}

More details in S. Nandan talk

Evolution from the H discovery towards HL-LHC

- At HL-LHC high precision tests of the SM
 - Precision below 5% for all the considered couplings
- Potential for more extensive tests of SM, e.g. EFT
- Differential XS
 measurements with fine
 granularity to probe
 subtle BSM effects

Summary

- H measurements are fundamental extensive tests of SM
- Presented H coupling measurements with CMS Run 2 data
 - Good compatibility with SM predictions
 - Precision better than 10% for most of the considered coupling modifiers
- Statistical uncertainties comparable to systematics ones for main H production and decay channels
- At HL-LHC high-precision tests of the SM

Rich and extensive Higgs physics program with exciting future perspectives

BACKUP

Test XS and BR compatibility with the SM

Good compatibility with SM for main H production & decay

Outlook for the future

Projection of ATLAS+CMS combination of HH searches @HL-LHC and HE LHC

Evidence of SM HH expected with 4σ Further improvement possible through new techniques & ideas→observation?

H couplings from differential H XS measurements

HL-LHC projections for $p_T(H)$ measurements in the ttH($\gamma\gamma$) channel to constrain k_{χ}

