Status of off-shell Higgs studies

Eleni Vryonidou University of Manchester

Why off-shell Higgs?

A probe of the Higgs width:

$$\sigma_{gg \to H \to VV}^{\mathrm{onshell}} \sim \frac{c_{ggH}^2 c_{VVH}^2}{m_H \Gamma_H}$$

$$\Gamma_H = 3.2^{+2.4}_{-1.7} \text{ MeV}$$

CMS, 2202.06923

$$\sigma_{gg \to H \to VV}^{\text{offshell}} \sim \frac{c_{ggH}^2 c_{VVH}^2}{m_{ZZ}^2}$$

Caola and Melnikov arXiv: 1307.4935

$$\Gamma_H = 4.6^{+2.6}_{-2.5} \text{ MeV}$$

ATLAS-CONF-2022-068

Off-shell Higgs

Why is this process interesting?

- Crucial for Higgs width determination
- ---- 2V
- Access to high energy regions due to large invariant masses:
 - Models with new heavy resonances
 - Sensitivity to SMEFT operators

Why is this process tough?

Signal background interference

Loop induced: hard to compute higher order corrections

Full top amplitudes only recently computed:

Agarwal, Jones, von Manteuffel 2011.15113, Brønnum-Hansen, Wang 2009.03742, 2101.12095

Complex EFT structure

LHCHWG Off-Shell Task Force

LHCHWG-2022-001

Contents

May 16, 2022

LHC HIGGS WORKING GROUP^a
PUBLIC NOTE

Off-shell Higgs Interpretations Task Force $^{\rm b}$

Models and Effective Field Theories Subgroup Report

Aleksandr Azatov ^{1,2,c}, Jorge de Blas ^{3,d}, Adam Falkowski^{4,e}, Andrei V. Gritsan^{5,f}, Christophe Grojean^{6,7,g}, Lucas Kang^{5,h}, Nikolas Kauer^{8,i} (ed.), Ennio Salvioni^{9,10,j}, Ulascan Sarica^{11,k}, Marion Thomas^{12,1} and Eleni Vryonidou^{12,m}

arXiv:2203.02418

1	Introduction					
2	What can off-shell Higgs measurements tell us about BSM physics? 2.1 Going beyond a universal flat direction	4 4 8 9				
3	Off-shell Higgs production in the SMEFT 3.1 Studies with the SMEFTatNLO framework 3.1.1 Relevant Operators 3.1.2 Generation using SMEFTatNLO 3.1.3 Results 3.2 Studies with the JHUGen+MCFM framework 3.2.1 Relevant Operators 3.2.2 Differential Distributions and Expected Constraints	11 11 12 14 21 21 22				
4	Summary of the Higgs basis parametrization of the SMEFT 4.1 Pep talk	24 24 28 30 33 37				
5	Short notes on the SMEFT 5.1 Higgs basis with additional constraint	38 38 38				
6	Effective Field Theory calculations and tools 40					
7	7 Summary and conclusions 43					
\mathbf{A}	A Higgs basis parametrization of the SMEFT: Notation and conventions 44					

Some highlights from this report to follow

Off-shell in Universal directions models

Golden rule:

$$\sigma_{gg \to H \to VV}^{\mathrm{onshell}} \sim \frac{c_{ggH}^2 c_{VVH}^2}{m_H \Gamma_H}$$

$$\sigma_{gg \to H \to VV}^{\text{offshell}} \sim \frac{c_{ggH}^2 c_{VVH}^2}{m_{ZZ}^2}$$

Universal direction:

$$g_{hii} = \kappa_{univ} g_{hii}^{SM} \qquad \Gamma_h = \kappa_{univ}^4 \Gamma_h^{SM}$$

$$\Gamma_h = \kappa_{\rm univ}^4 \Gamma_h^{\rm SM}$$

Flat direction from on-shell:

$$BR_{exo} = \frac{\kappa_{univ}^2 - 1}{\kappa_{univ}^2}$$

on-shell unaffected off-shell affected

Off-shell measurement gives a bound on $\kappa_{ m univ}$

Realised in particular BSM scenarios with specific couplings

$$\mathcal{L}_{\mathrm{BSM}} \ni \frac{c_H}{2f^2} (\partial_{\mu} |H|^2)^2 - \lambda_{H\varphi} |H|^2 \varphi^2$$
 e.g. Triplet scalars

Azatov, de Blas, Grojean, Salvioni

Off-shell in Universal directions models

Golden rule:

$$\sigma_{gg \to H \to VV}^{
m onshell} \sim rac{c_{ggH}^2 c_{VVH}^2}{m_H \Gamma_H}$$

$$\sigma_{gg \to H \to VV}^{\text{offshell}} \sim \frac{c_{ggH}^2 c_{VVH}^2}{m_{ZZ}^2}$$

Universal direction:

$$g_{hii} = \kappa_{univ} g_{hii}^{SM}$$

$$g_{hii} = \kappa_{univ} g_{hii}^{SM} \qquad \Gamma_h = \kappa_{univ}^4 \Gamma_h^{SM}$$

Flat direction from on-shell:

$$BR_{exo} = \frac{\kappa_{univ}^2 - 1}{\kappa_{univ}^2}$$

on-shell unaffected off-shell affected

Off-shell measurement gives a bound on $\kappa_{ m univ}$

Realised in particular BSM scenarios with specific couplings

$$\mathcal{L}_{\mathrm{BSM}} \ni \frac{c_H}{2f^2} (\partial_{\mu} |H|^2)^2 - \lambda_{H\varphi} |H|^2 \varphi^2$$
 e.g. Triplet scalars

Azatov, de Blas, Grojean, Salvioni

Beyond Universal directions

Relaxing universality assumption: $\tilde{\kappa}_{univ}, \kappa_b, \mathrm{BR}_{exo}$ Hbb coupling

Use on-shell VH, ttH with Higgs to bb and off-shell

Off-shell can help for large untagged widths

Azatov, de Blas, Grojean, Salvioni

Going more general: SMEFT

E.Vryonidou

The Higgs propagator

$$\mathcal{M} \propto \frac{c_i}{s - M_H^2 + i\Gamma_H(c_i)M_H}$$

$$s \gg M_H^2$$

$$\mathcal{M} \propto rac{c_i}{s-M_H^2}$$

$$s \sim M_H^2$$

$$\sigma_H(c_i) \cdot \frac{\Gamma_H^{4l}(c_i)}{\Gamma_H(c_i)}$$

Off-shell Higgs in SMEFT

Higgs basis: Top and Higgs interactions

$$\Delta \mathcal{L} = \frac{h}{v} \left(c_{gg} \frac{g_s^2}{4} G_{\mu\nu}^a G^{\mu\nu\,a} - m_t \underline{[\delta y_u]_{33}} \bar{t}_L t_R + \text{h.c.} + \delta c_z \frac{g_Z^2 v^2}{4} Z_\mu Z^\mu + c_{zz} \frac{g_Z^2}{4} Z_{\mu\nu} Z^{\mu\nu} + c_{z\square} g_L^2 Z_\mu \partial_\nu Z^{\mu\nu} \right)$$

$$+ \tilde{c}_{gg} \frac{g_s^2}{4} G_{\mu\nu}^a \tilde{G}_{\mu\nu}^a + \tilde{c}_{zz} \frac{g_Z^2}{4} Z_{\mu\nu} \tilde{Z}_{\mu\nu} \right) - g_Z (\delta g_L^{Zu})_{33} Z_\mu \bar{t}_L \gamma^\mu t_L - g_Z (\delta g_R^{Zu})_{33} Z_\mu \bar{t}_R \gamma^\mu t_R$$

$$- \frac{m_t}{4v^2} \left(1 + \frac{h}{v} \right) \left(g_s \bar{t}_R \sigma^{\mu\nu} T^a \underline{[d_{Gu}]_{33}} t_L G_{\mu\nu}^a + g_Z \bar{t}_R \sigma^{\mu\nu} T^a \underline{[d_{Zu}]_{33}} t_L Z_{\mu\nu} \right) + \text{h.c.},$$

red: CP odd, blue: CP even

- Top Yukawa $\frac{\sigma_{gg o h}}{\sigma_{gg o h}^{\mathrm{SM}}} \simeq \left(1 + 12\pi^2 c_{gg} + \mathrm{Re} \left[\delta y_u\right]_{33}\right)^2$ Degeneracy
- Higgs couplings to gauge bosons: Probed in VH, VBF, Higgs decays
- Top couplings to the Z: Probed in tZ, ttZ
- Top-gluon interactions: Probed in top pair production

See global fits: Ethier, et al arXiv:2105.00006 Ellis et al arXiv:2012.02779

The operators: Warsaw basis

Higgs operators

$\mathcal{O}_{arphi G}$	срG	$\left(\varphi^{\dagger}\varphi - \frac{v^2}{2}\right)G_A^{\mu\nu}G_{\mu\nu}^A$	$\mathcal{O}_{arphi W}$	cpW	$\left(\varphi^{\dagger}\varphi - \frac{v^2}{2}\right)W_I^{\mu\nu}W_{\mu\nu}^I$
$\mathcal{O}_{arphi B}$	cpBB				$(\varphi^{\dagger}\tau_{I}\varphi)B^{\mu\nu}W^{I}_{\mu\nu}$
\mathcal{O}_{arphi}	ср	$\left(\varphi^{\dagger}\varphi - \frac{v^2}{2}\right)^3$	\mathcal{O}_{arphi^d}	cdp	$\partial_{\mu}(\varphi^{\dagger}\varphi)\partial^{\mu}(\varphi^{\dagger}\varphi)$
$\mathcal{O}_{\varphi D}$	cpDC	$(\varphi^{\dagger}D^{\mu}\varphi)^{\dagger}(\varphi^{\dagger}D_{\mu}\varphi)$			

Top operators

\mathcal{O}_{tarphi}	ctp	\	\mathcal{O}_{tW}	ctW	$i(\bar{Q}\tau^{\mu\nu}\tau_It)\tilde{\varphi}W^I_{\mu\nu}$ + h.c.
\mathcal{O}_{tG}	ctG	$igs\left(\bar{Q}\tau^{\mu\nu}T_At\right)\tilde{\varphi}G^A_{\mu\nu}+\text{h.c.}$	\mathcal{O}_{tB}	-	$i(\bar{Q}\tau^{\mu\nu}\tau_It)\tilde{\varphi}W^I_{\mu\nu}$ + h.c. $i(\bar{Q}\tau^{\mu\nu}t)\tilde{\varphi}B_{\mu\nu}$ + h.c.
$\mathcal{O}_{arphi Q}^{(3)}$		$i(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \tau_{I} \varphi) (\bar{Q} \gamma^{\mu} \tau^{I} Q)$	\mathcal{O}_{tZ}	ctZ	$-\sin\theta_{W}\mathcal{O}_{tB}+\cos\theta_{W}\mathcal{O}_{tW}$
$\mathcal{O}_{arphi Q}^{(-)}$	срQМ	$\mathcal{O}_{arphi Q}^{(1)} - \mathcal{O}_{arphi Q}^{(3)}$	$\mathcal{O}_{arphi t}$	cpt	$i(Q\tau^{\mu\nu} t) \varphi B_{\mu\nu} + \text{h.c.}$ $-\sin \theta_W \mathcal{O}_{tB} + \cos \theta_W \mathcal{O}_{tW}$ $i(\varphi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \varphi) (\bar{t} \gamma^{\mu} t)$

See also: Englert, Soreq, Spannowsky arXiv:1410.5440

Azatov et al arXiv:1406.6338,1608.00977

SMEFT analysis of off-shell production

Things to consider:

- The relevant operators modifying the signal:
 - Higgs couplings
- The operators entering the gg→ZZ background
 - The constraints on the top-operators

 - Unconstrained operators to be taken into account

What should we expect?

Helicity amplitude computation:

$\lambda_{g_1}, \lambda_{g_2}, \lambda_{Z_1}, \lambda_{Z_2}$	$\mathcal{O}_{arphi B}$	$\mathcal{O}_{arphi W}$	$\mathcal{O}_{arphi G}$
+,+,+,+	$\frac{m_t^2 s_{\mathbf{w}}^2 g_s^2}{8\sqrt{2}\pi^2} \left[\log\left(\frac{s}{m_t^2}\right) - i\pi \right]^2$	$\frac{m_t^2 c_{\rm w}^2 g_s^2}{8\sqrt{2}\pi^2} \left[\log\left(\frac{s}{m_t^2}\right) - i\pi \right]^2$	_
+,+,-,-	$\frac{m_t^2 s_{\rm w}^2 g_s^2}{8\sqrt{2}\pi^2} \left[\log\left(\frac{s}{m_t^2}\right) - i\pi \right]^2$	$\frac{m_t^2 c_{\rm w}^2 g_s^2}{8\sqrt{2}\pi^2} \left[\log\left(\frac{s}{m_t^2}\right) - i\pi \right]^2$	_
+,+,0,0	_	_	$s \frac{v^2 e^2}{2\sqrt{2} m_Z^2 c_{\rm w}^2 s_{\rm w}^2}$

$\lambda_{g_1}, \lambda_{g_2}, \lambda_{Z_1}, \lambda_{Z_2}$	\mathcal{O}_{tarphi}	$\mathcal{O}_{arphi t}$	${\cal O}_{arphi Q}^{(-)}$
+,+,0,0	$\frac{m_t v^3 e^2 g_s^2}{128\pi^2 m_Z^2 c_w^2 s_w^2} \left[\log\left(\frac{s}{m_t^2}\right) - i\pi \right]^2$	$\frac{m_t^2 v^2 e^2 g_s^2}{32\sqrt{2}\pi^2 m_Z^2 c_w^2 s_w^2} \left[\log\left(\frac{s}{m_t^2}\right) - i\pi \right]^2$	$\frac{m_t^2 v^2 e^2 g_s^2}{32\sqrt{2} \pi^2 m_Z^2 c_w^2 s_w^2} \left[\log \left(\frac{s}{m_t^2} \right) - i \pi \right]^2$

Logarithmic growth

Rossia, Thomas, EV soon

What should we expect?

Helicity amplitude computation:

$\lambda_{g_1}, \lambda_{g_2}$	$\lambda_{Z_1},\lambda_{Z_2}$	\mathcal{O}_{tarphi}	$\mathcal{O}_{arphi t}$	${\cal O}_{arphi Q}^{(-)}$
+,-	+,0,0	$\frac{m_t v^3 e^2 g_s^2}{128\pi^2 m_Z^2 c_w^2 s_w^2} \left[\log\left(\frac{s}{m_t^2}\right) - i\pi \right]^2$	$\frac{m_t^2 v^2 e^2 g_s^2}{32\sqrt{2}\pi^2 m_Z^2 c_{\rm w}^2 s_{\rm w}^2} \Big[\log \left(\frac{s}{m_t^2}\right) - i\pi \Big]^2$	$\frac{m_t^2 v^2 e^2 g_s^2}{32\sqrt{2} \pi^2 m_Z^2 c_{ m w}^2 s_{ m w}^2} \Big[\log \left(rac{s}{m_t^2} ight) - i \pi \Big]^2 \Big]$

Logarithmic growth

Rossia, Thomas, EV soon

Higgs-gauge interactions

Thomas, EV in arXiv:2203.02418

Top Yukawa

Thomas, EV in arXiv:2203.02418

Top Yukawa

Thomas, EV in arXiv:2203.02418

Top-Z couplings

Thomas, EV in arXiv:2203.02418

Top-Z couplings

Thomas, EV in arXiv:2203.02418

Going beyond gluon fusion

Also allowing CP odd Higgs couplings

Gritsan, Kang, Sarica in arXiv:2203.02418

Conclusions

- Off-shell Higgs production key in constraining the Higgs width
- Off-shell measurements can break degeneracies from onshell production
- SMEFT analysis of off-shell Higgs production needs to take into account:
 - Operators modifying the signal
 - Operators modifying the loop-induced background
- Operators modifying the top-Z coupling play a special role, as they are loosely constrained and lead to energy growing amplitudes
- More systematic and realistic studies needed

