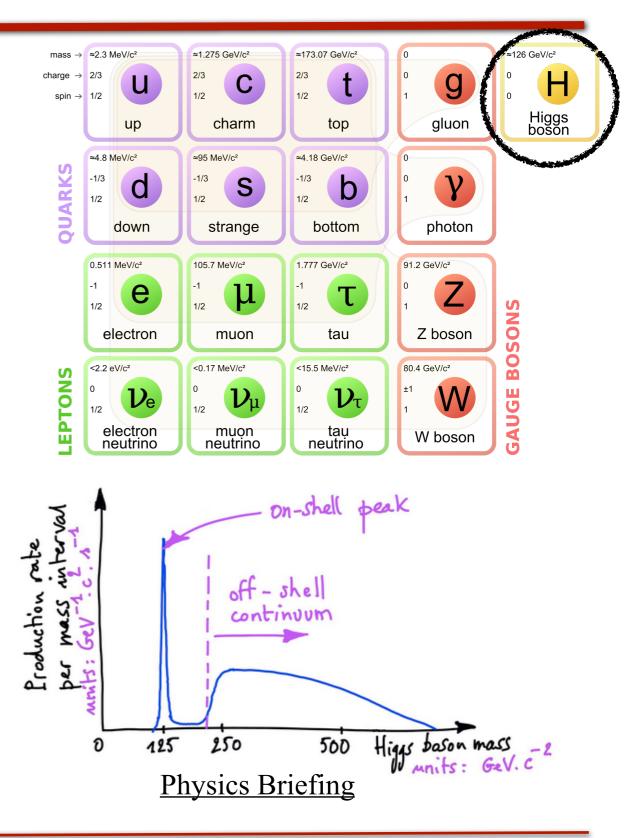

Higgs boson mass, width, CP and anomalous couplings measurements at CMS

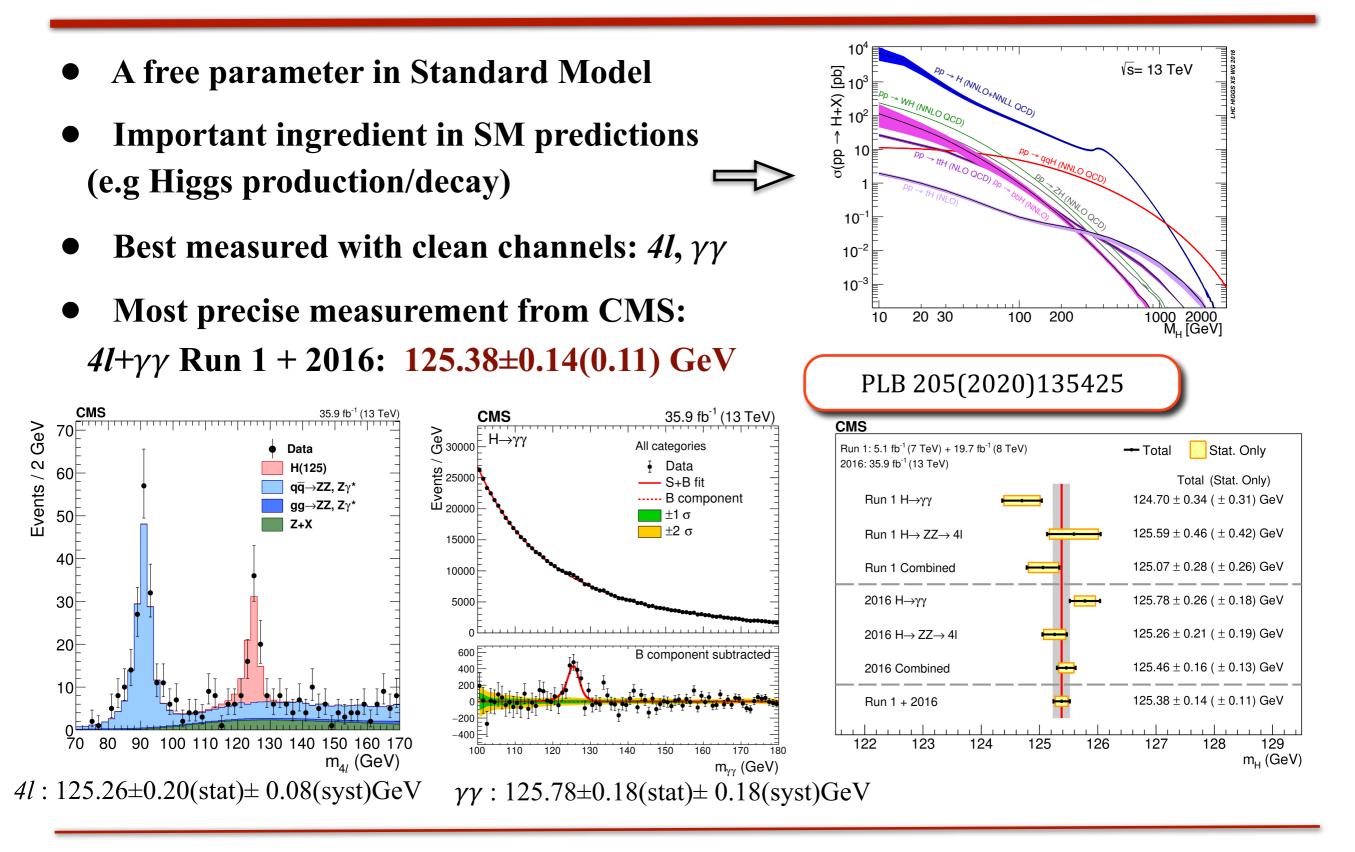
Li Yuan Beihang University

On behalf of CMS Collaboration May 25, 2023

Outline

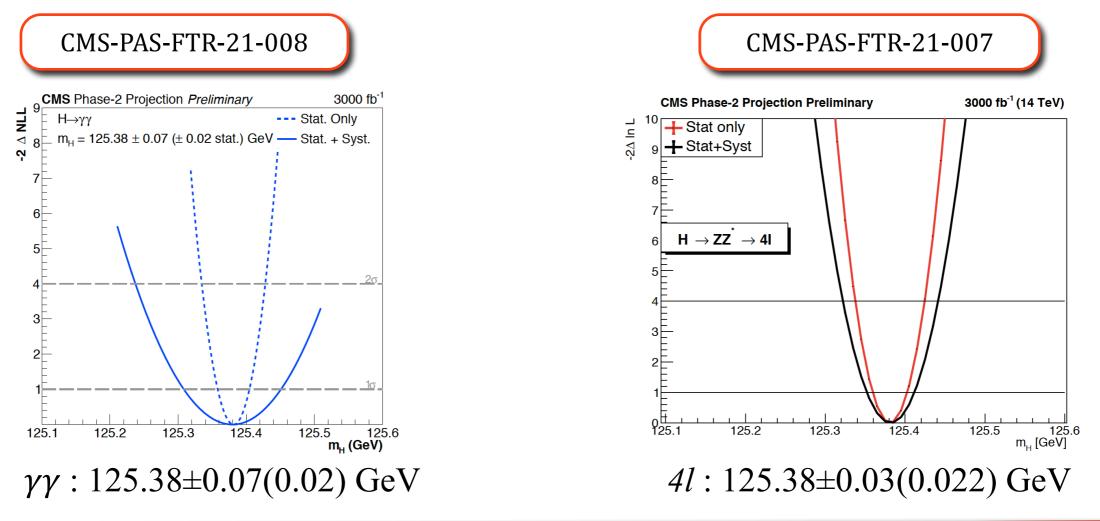

Introduction

- ✤ Higgs properties measurements
 - Mass
 - ✤ Width
 - CP structure
 - Anomalous couplings
- Summary


Higgs is so peculiar

- The only scalar in fundamental particles
- Responsible for EWSB and explain the origin of mass
- Its mass is at EW scale O(100GeV)
- Its special mass lineshape

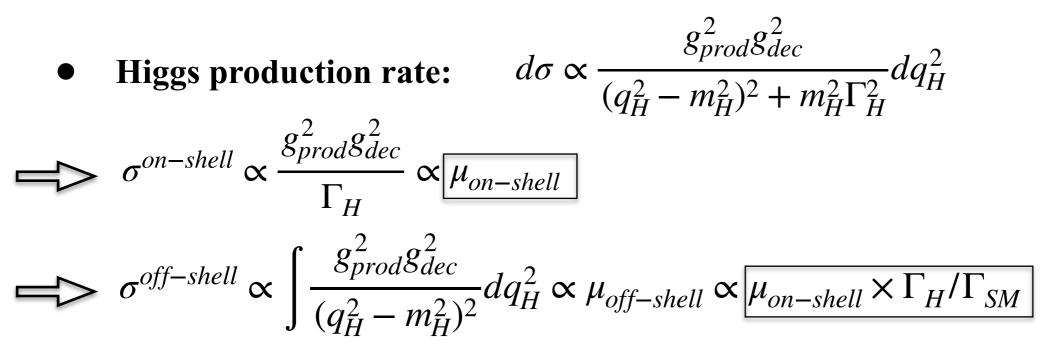
Important to measure its properties.



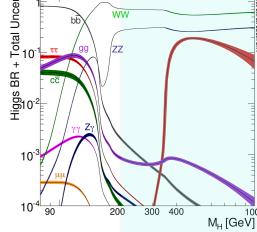
Higgs Boson Mass

Prospect for Higgs Mass Measurement in HL-LHC

- Projection based on Run 2 data analysis accounting some changes:
 - much higher pileup
 - significantly more granular energy corrections of ECAL due to enhanced statistics
 - better resolution for μ and higher acceptance for μ/e due to new tracker

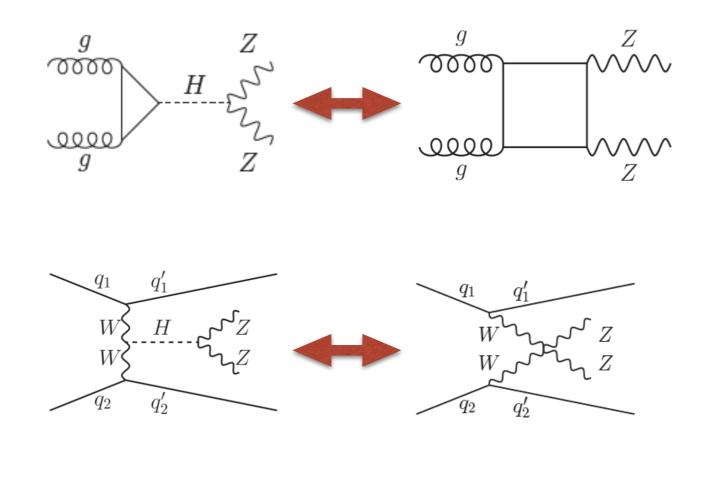


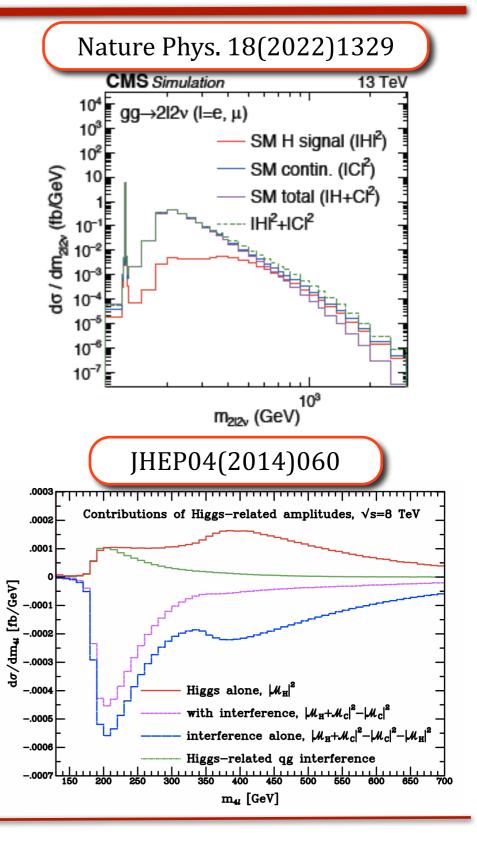
Higgs Boson Width


Predicted width in SM $\Gamma_{\rm H}$: **4.07MeV**

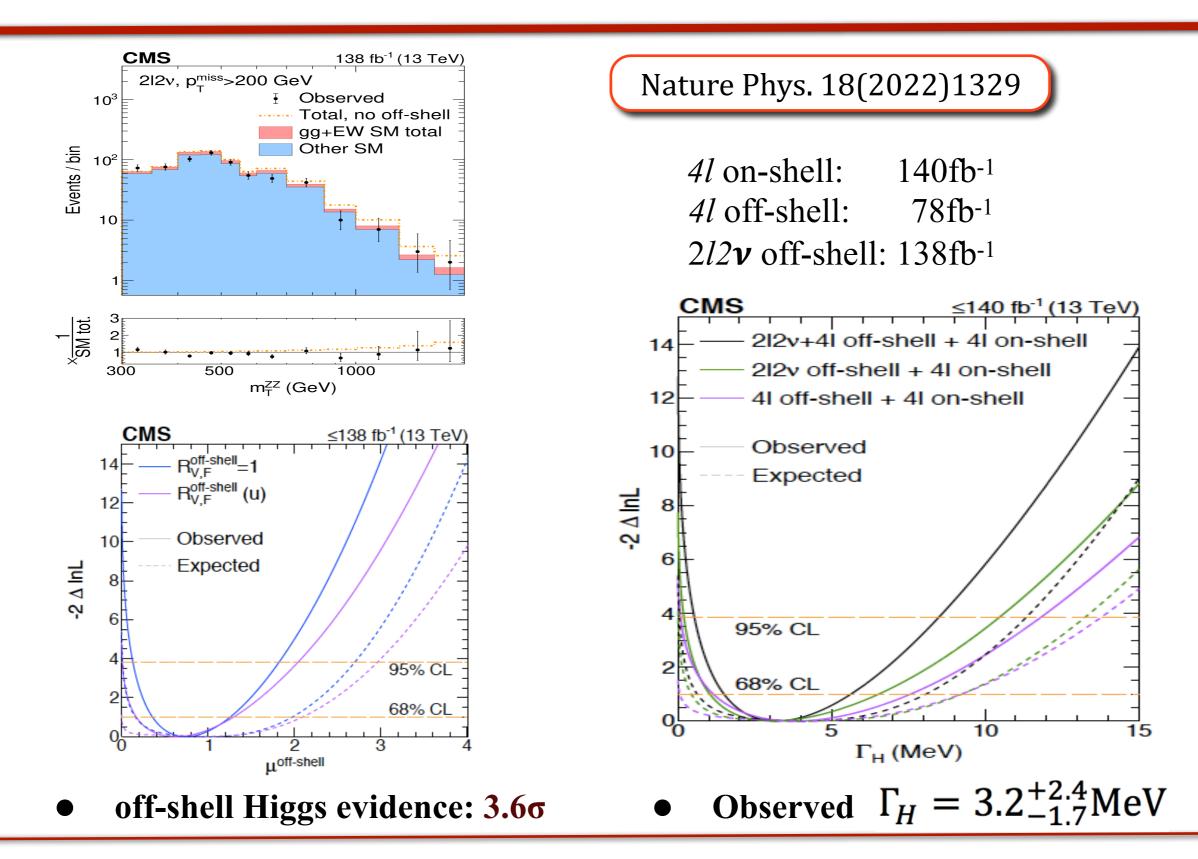
Direct measurements : measuring Higgs lifetime or on-shell width. mass resolution limited by detector resolution 1-2GeV.

$$\sim 3 \times 10^{-3} \, eV < \Gamma_{\rm H} < 0.5 - 3 \, GeV$$


Indirect measurement: measuring the signal strengths in on-shell and off-shell separately, and $\Gamma_H/\Gamma_{SM} = \frac{\mu_{off-shell}}{\mu_{on-shell}}$ take their ratio: ZZ is the ideal channel



Off-shell Higgs in ZZ channel


• Difficulties for probing off-shell Higgs:

- low production rate: $\sim 10\%$ of total xs
- large destructive interference with continuum background

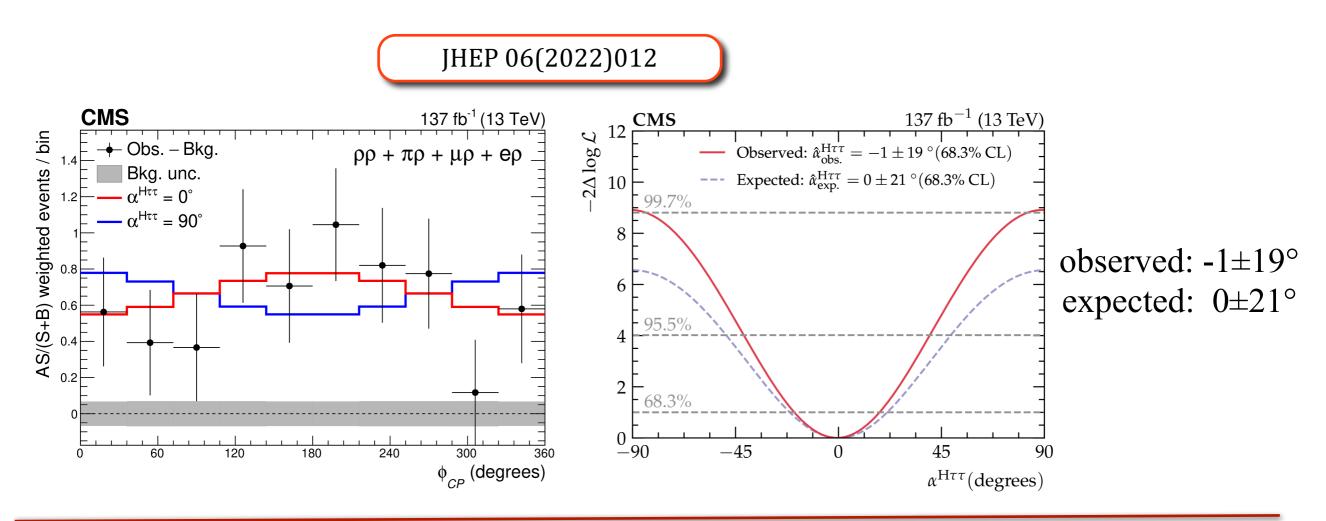
Evidence for off-shell Higgs and Measured Width

Higgs CP Structure

- Higgs is CP even scalar in SM: $J^{PC} = 0^{++}$
- Alternative spin/parity hypothesis excluded by > 99.9% CL at Run 1 with bosonic channels
- Strong theoretical motivation to search for CP-violating effects in couplings of Higgs and fermions

CP-odd contribution for Higgs and bosons couplings largely suppressed

	Probing process	Scale of CP-odd contribution	
Fermion	Htt, H $ au au$	O(1): tree level	
Gauge boson	Hzz, Hww, Hz γ , H $\gamma\gamma$, Hgg	O(1/\^2)	


 Λ is the scale of BSM physics in effective field theory

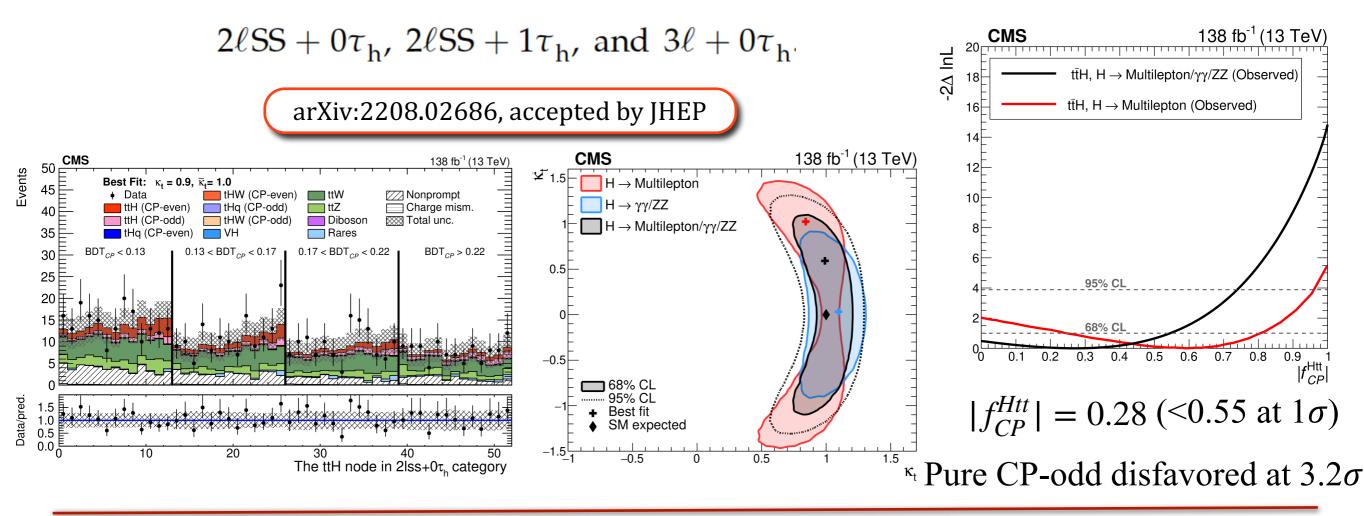
Probe CP violation in H $\tau\tau$

• Lagrangian for τ Yukawa coupling parameterized with

$$\mathcal{L}_{\rm Y} = -\frac{m_{\tau}}{v} \mathbf{H} \begin{pmatrix} \mathbf{CP \ odd} \\ \mathbf{\kappa}_{\tau} \overline{\mathbf{\tau}} \mathbf{\tau} + \widetilde{\mathbf{\kappa}}_{\tau} \overline{\mathbf{\tau}} i \gamma_5 \mathbf{\tau} \end{pmatrix}$$

• Use observable Φ_{CP} to probe the effective mixing angle $\alpha^{H\tau\tau}$

H)

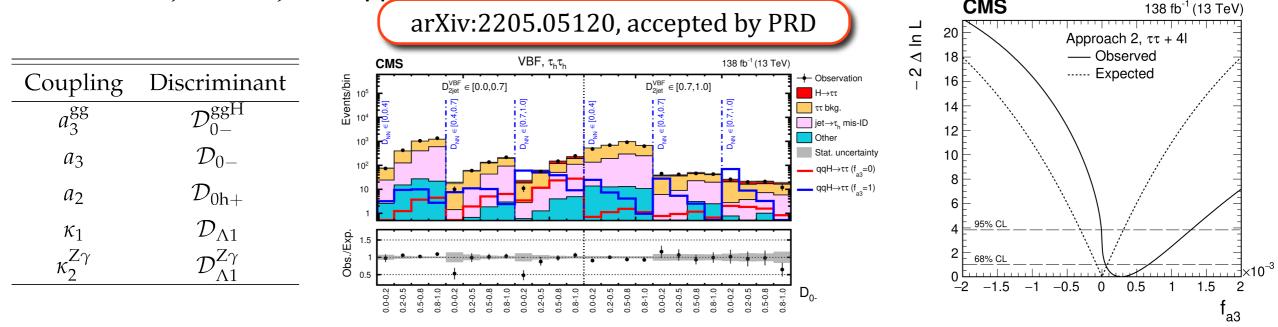

 $\tan(\alpha^{\mathrm{H}\tau\tau}) = \frac{\widetilde{\kappa}_{\tau}}{\kappa_{\tau}}$

Probe CP violation in ttH+tH

• Similarly, Lagrangian for top Yukawa coupling parameterized with

$$\mathcal{L}_{t\bar{t}H} = \frac{m_{t}}{v} \bar{\psi}_{t} (\kappa_{t} + i\gamma_{5}\tilde{\kappa}_{t})\psi_{t} H \qquad \qquad f_{CP}^{Htt} = \frac{|\tilde{\kappa}_{t}|^{2}}{|\kappa_{t}|^{2} + |\tilde{\kappa}_{t}|^{2}} \operatorname{sign}(\tilde{\kappa}_{t}/\kappa_{t})$$

• ttH+tH (multilepton channel): train BDT to separate CP-even and CP-odd



HVV Anomalous Couplings

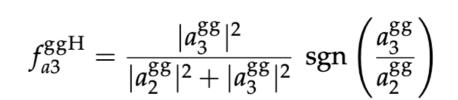
• Interaction amplitude of H and VV(ZZ, WW, $Z\gamma$, $\gamma\gamma$ and gg) are parameterized as:

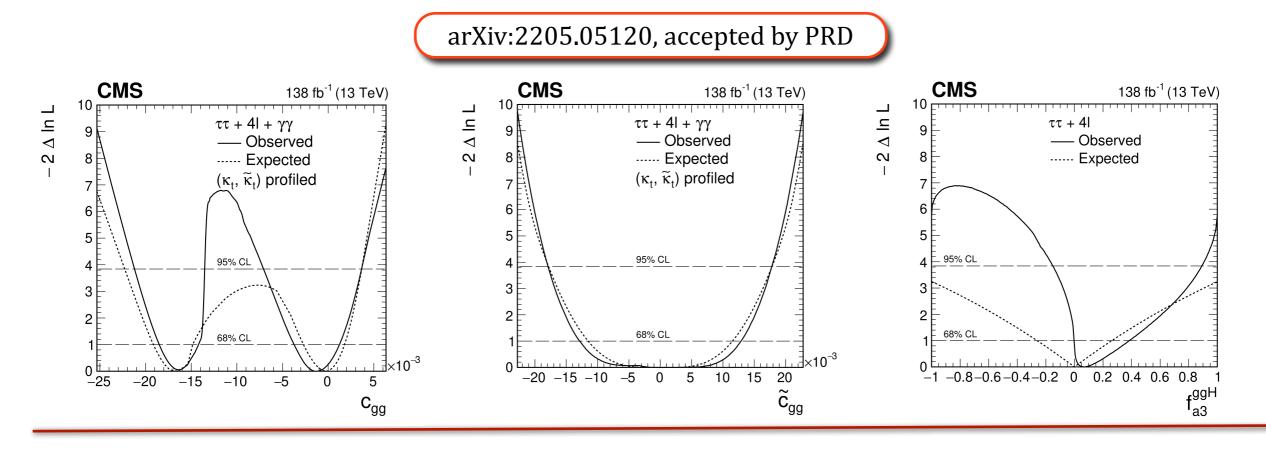
$$\mathcal{A}(\text{HVV}) \sim \begin{bmatrix} a_{1}^{\text{VV}} + \frac{\kappa_{1}^{\text{VV}} q_{1}^{2} + \kappa_{2}^{\text{VV}} q_{2}^{2}}{\left(\Lambda_{1}^{\text{VV}}\right)^{2}} \end{bmatrix} m_{\text{V1}}^{2} \epsilon_{\text{V1}}^{*} \epsilon_{\text{V2}}^{*} + a_{2}^{\text{VV}} f_{\mu\nu}^{*(1)} f^{*(2)\mu\nu} + a_{3}^{\text{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2)\mu\nu} \end{bmatrix}$$

Define:
$$f_{ai} = \frac{|a_{i}|^{2} \sigma_{i}}{\sum_{i} |a_{i}|^{2} \sigma_{i}} \qquad a_{j} = a_{2}, a_{3}, \frac{1}{\Lambda_{1}^{2}}$$

• Measure $f_{ai} \cos(\Phi_{ai})$ by assuming $a_i \ge 0, \cos(\Phi_{ai}) = \pm 1$ to probe HVV Anomalous couplings, multiple analyses performed with on-shell Higgs events: $H \rightarrow \tau \tau, H \rightarrow 4l, H \rightarrow \gamma \gamma$

Hgg Anomalous Couplings


• Constrain Hgg anomalous couplings by measuring ggH production


$$\begin{split} \mu_{\rm ggH} = & 1.1068 \kappa_{\rm t}^2 + 0.0082 - 0.1150 \kappa_{\rm t} + 2.5717 \widetilde{\kappa}_{\rm t}^2 + 1.0298 (12\pi^2 c_{\rm gg})^2 + 2.3170 (8\pi^2 \widetilde{c}_{\rm gg})^2 \\ & + 2.1357 (12\pi^2 c_{\rm gg}) \kappa_{\rm t} - 0.1109 (12\pi^2 c_{\rm gg}) + 4.8821 (8\pi^2 \widetilde{c}_{\rm gg}) \widetilde{\kappa}_{\rm t}. \end{split}$$

• Two EFT couplings:

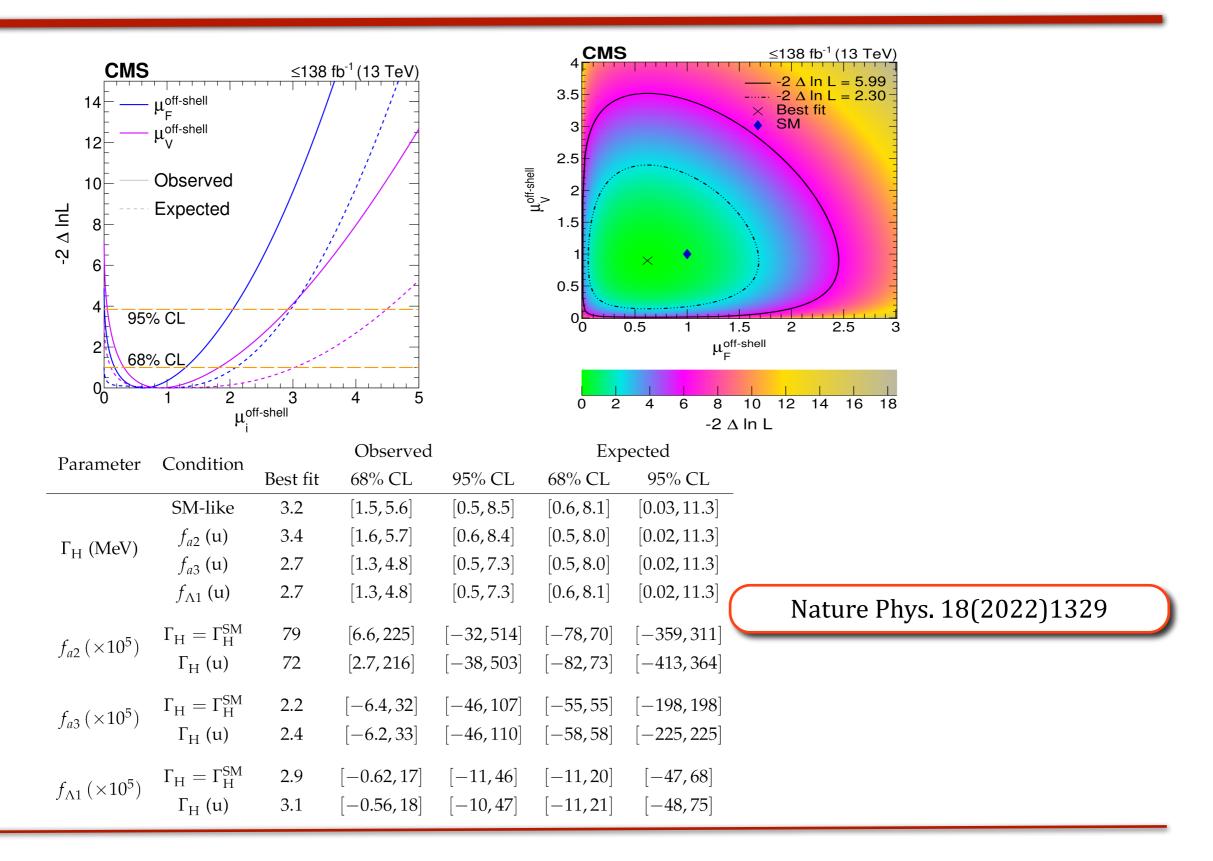
$$c_{gg} = -\frac{1}{2\pi\alpha_{\rm S}}a_2^{\rm gg}$$
, **CP even**
 $\widetilde{c}_{gg} = -\frac{1}{2\pi\alpha_{\rm S}}a_3^{\rm gg}$, **CP odd**

HVV Anomalous Couplings from Off-shell

H+bkg+ H+bkg+l **HVV** anomalous 10² bkg bkg dơ/dm₄{ [fb/20 GeV] EW 4l+2j gg→4ℓ 10-1 couplings introduce dσ/dm_{4ℓ} [fb/GeV] $\kappa_1 \sim \Lambda_1^{-2}$ $g_2 \sim a_2$ $g_4 \sim a_3$ distinct kinematics in 10 off-shell region. 10-3 10* More significant in VBF LHC, 13 TeV LHC, 13 TeV 10-4 JHUGen+MCFM JHUGen+MCFM+HNNLO production mode. 400 500 1000 1500 2000 200 600 800 m₄/[GeV] m₄ [GeV] Nature Phys. 18(2022)1329 CMS CMS CMS ≤140 fb⁻¹ (13 TeV) ≤140 fb⁻¹ (13 TeV) ≤140 fb⁻¹ (13 TeV) Γ_{H} =4.1 MeV 16 Observed — Γ_{H} =4.1 MeV – Γ_н=4.1 MeV 14⊦ 14 Expected — $\Gamma_{H}(u)$ —— Г_н (u) $--\Gamma_{H}(u)$ 14 12 12 On-shell 4 On-shell 4I — On-shell 4l 12 10 10 Observed -2 Δ InL 10 Observed -2 Δ InL Δ InL Expected Expected \sim 95% CL 95% CL 95% CL 2 68% CL 68% CL 68% CL 0 0 0 0.005 0.01 0.005 -0.005 0.001 -0.01 0 -0.005-0.001 $\mathbf{1}_{\Lambda 1}$ off-shell events brings $O(10\%) \sim O(50\%)$ improvement on limits

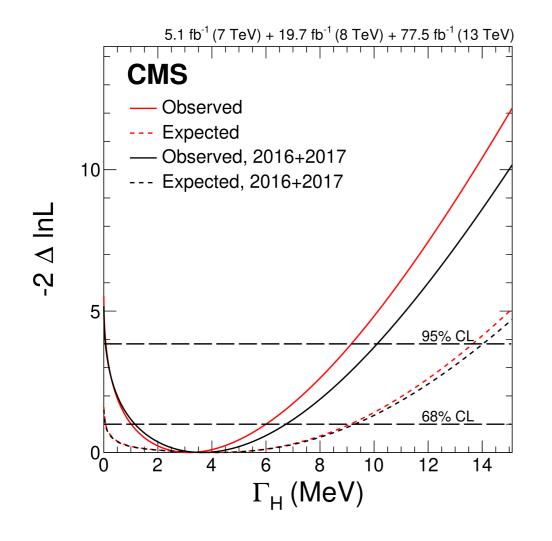
Summary

- Higgs mass measurement: $125.38\pm0.14(0.11)$ GeV ($\gamma\gamma + 4l$ Run 1 + 2016)
- First evidence of off-shell Higgs production at LHC: $4l + 2l2\nu \Rightarrow 3.6\sigma$
- Higgs width measurement: $\Gamma_H = 3.2^{+2.4}_{-1.7}$ MeV
- CP violating effect probed in fermion sector, pure CP odd coupling excluded > 3σ
- Stringent limits on HVV anomalous couplings.
- More precise measurement with Run 3 data. Stay tuned!



*l*2*v*+4*l* combined results summary

		\subset	Nature Phys. 18(2022)1329	
Param.	Cond.	Observed		Expected
Falanı.	Conu.	c.v.	68% 95% CL	68% 95% CL
$\mu_{\mathrm{F}}^{\mathrm{off.}}$	$\mu_{\mathrm{V}}^{\mathrm{off.}}$ (u)	0.62	$[0.17, 1.3] \mid [0.0060, 2.0]$	$[2 \cdot 10^{-5}, 2.1] \mid < 3.0$
$\mu_{ m V}^{ m off.}$	$\mu_{\mathrm{F}}^{\mathrm{off.}}$ (u)	0.90	$[0.31, 1.8] \mid [0.051, 2.9]$	$[0.11, 3.0] \mid < 4.5$
$\mu^{\text{off.}}$	$R_{ m V,F}^{ m off.}=1$	0.74	$[0.36, 1.3] \mid [0.13, 1.8]$	$[0.16, 2.0] \mid [0.0086, 2.7]$
μ	$R_{\rm V,F}^{\rm off.}$ (u)	0.62	$[0.17, 1.3] \mid [0.0061, 2.0]$	$[4 \cdot 10^{-5}, 2.1] \mid [1 \cdot 10^{-5}, 3.0]$
$\Gamma_{ m H}$	SM-like	3.2	$[1.5, 5.6] \mid [0.53, 8.5]$	$[0.62, 8.1] \mid [0.035, 11.3]$
$\Gamma_{ m H}$	f_{a2} (u)	3.4	$[1.6, 5.7] \mid [0.60, 8.4]$	$[0.52, 8.0] \mid [0.015, 11.3]$
$\Gamma_{ m H}$	$f_{a3}(u)$	2.7	$[1.3, 4.8] \mid [0.47, 7.3]$	$[0.53, 8.0] \mid [0.015, 11.3]$
$\Gamma_{ m H}$	$f_{\Lambda 1}$ (u)	2.7	$[1.3, 4.8] \mid [0.46, 7.2]$	$[0.55, 8.1] \mid [0.019, 11.3]$


μ_{offshell} and Anomalous Couplings

Previous results on width measurement

• CMS: $H \rightarrow ZZ \rightarrow 4l$

```
on-shell: Run 1 + Run 2 (77.5fb<sup>-1</sup>)
off-shell: Run 2 (77.5fb<sup>-1</sup>)
```


PRD 99 (2019) 112003

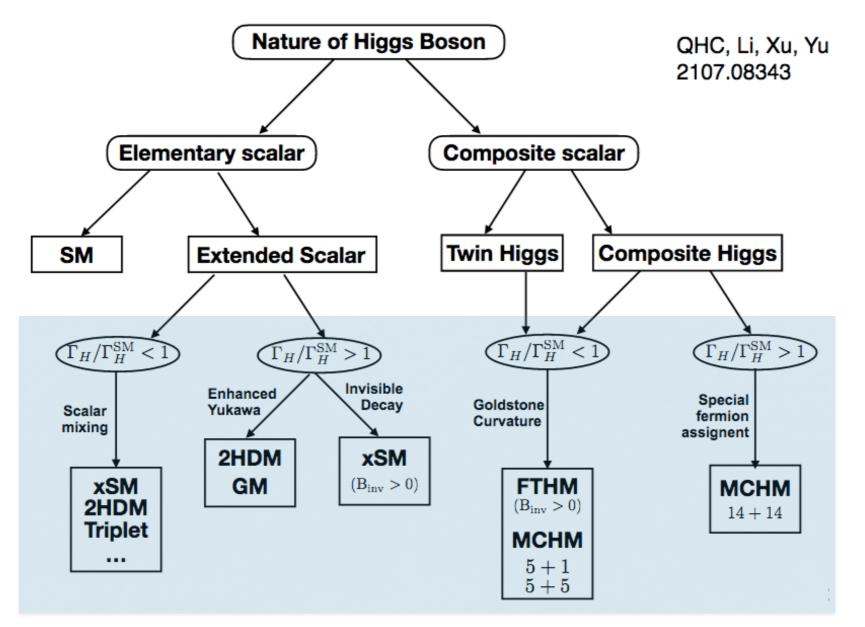
68% [95%]

Parameter	Observed	Expected	
Γ_H (MeV)	$3.2^{+2.8}_{-2.2}$ [0.08, 9.16]	$4.1^{+5.0}_{-4.0}$ [0.0, 13.7]	

Parameter	Observed	Expected
$\mu^{\text{off-shell}}$	$0.78^{+0.72}_{-0.53}$ [0.02, 2.28]	$1.00^{+1.20}_{-0.99}$ [0.0, 3.2]
$\mu_F^{\text{off-shell}}$	$0.86^{+0.92}_{-0.68}$ [0.0, 2.7]	$1.0^{+1.3}_{-1.0}$ [0.0, 3.5]
$\mu_V^{\text{off-shell}}$	$0.67^{+1.26}_{-0.61}$ [0.0, 3.6]	$1.0^{+3.8}_{-1.0}$ [0.0, 8.4]

HVV anomalous coupling from on-shell

Parameter Scenario			Observed	Expected	
<i>f</i> _{<i>a</i>3} CMS-HIG-19-009	$\begin{cases} & \text{Approach 1} \\ & f_{a2} = f_{\Lambda 1} = f_{\Lambda 1}^{Z\gamma} = 0 \\ & \text{Approach 1} \\ & \text{float } f_{a2}, f_{\Lambda 1}, f_{\Lambda 1}^{Z\gamma} \\ & \text{Approach 2} \\ & \text{float } f_{a2}, f_{\Lambda 1} \end{cases}$	best fit 68% CL 95% CL best fit 68% CL 95% CL best fit 68% CL 95% CL	0.00004 [-0.00007, 0.00044] [-0.00055, 0.00168] -0.00805 [-0.02656, 0.00034] [-0.07191, 0.00990] 0.00005 [-0.00010, 0.00061] [-0.00072, 0.00218]	0.00000 [-0.00081, 0.00081] [-0.00412, 0.00412] 0.00000 [-0.00086, 0.00086] [-0.00423, 0.00422] 0.0000 [-0.0012, 0.0012] [-0.0057, 0.0057]	
f_{a2}	$\begin{cases} & \text{Approach 1} \\ & f_{a3} = f_{\Lambda 1} = f_{\Lambda 1}^{Z\gamma} = 0 \\ & \text{Approach 1} \\ & \text{float } f_{a3}, f_{\Lambda 1}, f_{\Lambda 1}^{Z\gamma} \\ & \text{Approach 2} \\ & \text{float } f_{a3}, f_{\Lambda 1} \end{cases}$	best fit 68% CL 95% CL best fit 68% CL 95% CL 95% CL 95% CL	$\begin{array}{l} 0.00020 \\ [-0.00010, 0.00109] \\ [-0.00078, 0.00368] \\ -0.24679 \\ [-0.41087, -0.15149] \cup [-0.00008, 0.00065] \\ [-0.66842, -0.08754] \cup [-0.00091, 0.00309] \\ -0.00002 \\ [-0.00178, 0.00103] \\ [-0.00694, 0.00536] \end{array}$	0.0000 [-0.0012, 0.0014] [-0.0075, 0.0073] 0.0000 [-0.0017, 0.0014] [-0.0082, 0.0073] 0.0000 [-0.0060, 0.0033] [-0.0206, 0.0131]	
$f_{\Lambda 1}$	$\begin{cases} & \text{Approach 1} \\ & f_{a3} = f_{a2} = f_{\Lambda 1}^{Z\gamma} = 0 \\ & \text{Approach 1} \\ & \text{float } f_{a3}, f_{a2}, f_{\Lambda 1}^{Z\gamma} \\ & \text{Approach 2} \\ & \text{float } f_{a3}, f_{a2} \end{cases}$	best fit 68% CL 95% CL best fit 68% CL 95% CL best fit 68% CL 95% CL	$\begin{array}{l} 0.00004 \\ [-0.00002, 0.00022] \\ [-0.00014, 0.00060] \\ 0.18629 \\ [-0.00002, 0.00019] \cup [0.07631, 0.27515] \\ [-0.00523, 0.35567] \\ 0.00012 \\ [-0.00021, 0.00141] \\ [-0.00184, 0.00443] \end{array}$	0.00000 [-0.00016, 0.00026] [-0.00069, 0.00110] 0.00000 [-0.00017, 0.00036] [-0.00076, 0.00134] 0.0000 [-0.0013, 0.0030] [-0.0056, 0.0102]	
$f^{Z\gamma}_{\Lambda 1}$	$\begin{cases} & \text{Approach 1} \\ & f_{a3} = f_{a2} = f_{\Lambda 1} = 0 \\ & \text{Approach 1} \\ & \text{float } f_{a3}, f_{a2}, f_{\Lambda 1} \end{cases}$	best fit 68% CL 95% CL best fit 68% CL 95% CL	$\begin{array}{l} -0.00001 \\ [-0.00099, 0.00057] \\ [-0.00387, 0.00301] \\ -0.02884 \\ [-0.09000, -0.00534] \cup [-0.00068, 0.00078] \\ [-0.29091, 0.03034] \end{array}$	0.0000 [-0.0026, 0.0020] [-0.0096, 0.0082] 0.0000 [-0.0027, 0.0026] [-0.0099, 0.0096]	


TABLE VI. Summary of allowed 68% C.L. (central values with uncertainties) and 95% C.L. (in square brackets) intervals for the anomalous coupling parameters $f_{ai} \cos(\phi_{ai})$ obtained from the analysis of the combination of Run 1 (only on-shell) and Run 2 (on-shell and off-shell) data sets. Three constraint scenarios are shown: using only on-shell events, using both on-shell and off-shell events with the Γ_H left unconstrained, or with the constraint $\Gamma_H = \Gamma_H^{SM}$.

Parameter	Scenario	Observed	Expected
$f_{a3}\cos(\phi_{a3})$	On-shell	$-0.0001^{+0.0004}_{-0.0015}$ [-0.163, 0.090]	$0.0000^{+0.0019}_{-0.0019}$ [-0.082, 0.082]
	Any Γ_H	$0.0000^{+0.0003}_{-0.0010}$ [-0.0165, 0.0087]	$0.0000^{+0.0015}_{-0.0015}$ [-0.038, 0.038]
	$\Gamma_{H}=\Gamma_{H}^{\rm SM}$	$0.0000^{+0.0003}_{-0.0009}$ [-0.0067, 0.0050]	$0.0000^{+0.0014}_{-0.0014}$ [-0.0098, 0.0098]
$f_{a2}\cos(\phi_{a2})$	On-shell	$0.0004^{+0.0026}_{-0.0006}$ [-0.0055, 0.0234]	$0.0000^{+0.0030}_{-0.0023}$ [-0.021, 0.035]
	Any Γ_H	$0.0004^{+0.0026}_{-0.0006}$ [-0.0035, 0.0147]	$0.0000^{+0.0019}_{-0.0017}$ [-0.015, 0.021]
	$\Gamma_H = \Gamma_H^{\rm SM}$	$0.0005^{+0.0025}_{-0.0006}$ [-0.0029, 0.0129]	$0.0000^{+0.0012}_{-0.0016}$ [-0.010, 0.012]
$f_{\Lambda 1} \cos(\phi_{\Lambda 1})$	On-shell	$0.0002^{+0.0030}_{-0.0009}$ [-0.209, 0.089]	$0.0000^{+0.0012}_{-0.0006}$ [-0.059, 0.032]
	Any Γ_H	$0.0001^{+0.0015}_{-0.0006}$ [-0.090, 0.059]	$0.0000^{+0.0013}_{-0.0007}$ [-0.017, 0.019]
	$\Gamma_{H}=\Gamma_{H}^{\rm SM}$	$0.0001^{+0.0015}_{-0.0005}$ [-0.016, 0.068]	$0.0000^{+0.0013}_{-0.0006}$ [-0.015, 0.018]
$f_{\Lambda 1}^{Z\gamma}\cos(\phi_{\Lambda 1}{}^{Z\gamma})$	On-shell	$0.0000^{+0.3554}_{-0.0087}$ [-0.17, 0.61]	$0.0000^{+0.0091}_{-0.0100}$ [-0.098, 0.343]

CMS-HIG-19-009

What if $\Gamma_{\rm H}$ deviates from SM

4. Higgs boson width

https://indico.ihep.ac.cn/event/14180/session/0/contribution/93/material/slides/0.pdf