

Introduction to EFT

ETH zürich

- SMEFT: Probe indirect signals of new physics in an **agnostic** & systematic way
- SMEFT operators have a global effect
 - → need a global measurement strategy from experiments
 - → different channels have sensitivity on subsets of operators (sensitivity study from LHC-EFT-WG)
 - → flat directions (operators with similar effect) can be ruled out with combination

- Common set of recommendations fundamental (LHC EFT WG Report):
 - → Choice of basis and input parameters
 - → Best-practice for simulation and reweighting
 - → Choice of parametrization for observables
 - → Choice of analysis phase-spaces to avoid double-counting

EFT analysis strategies in CMS

EFT analyses can follow an **indirect** or **direct** approach

Indirect approach

- Reinterpretation of fiducial (differential) cross-sections measurements (e.g STXS in the Higgs)
 - More re-interpretable, easier to preserve
- Access to more operators but with limited sensitivity (not optimized for EFT)
 - constraint power from combination
 - flat directions can be disentangle with PCA → challenge for theory usage
- **Acceptance effects** difficult to model for some channels

Direct approach

- BSM effect fully simulated to detector-level.
 Analyses optimized for EFT parameters sensitivity
- More difficult to preserve (MVAs, full detector reco)
- May be optimal for a set of operators, but can be computationally expensive
- Combination possible but more difficult (overlaps)
- Optimal observables:
 - Based on Matrix Element Method (MELA)
 - Based on parameterized classifiers optimized with ML → learns the structure of the likelihood ratio

L(data|c_j)

EFT in Top Physics

Analysis approaches:

- unfolded cross-sections
- direct measurements using optimal observables or ML discriminators

Parametrizations:

Warsaw basis: dim6top or SMEFT@NLO

In this talk:

- Recent tt+X analysis
- tt+H/Z boosted analysis

- Most comprehensive CMS EFT analysis about top-related operators 0
 - Targeting ttH, ttZ, ttW, tHg, tZg, tttt processes
- Broad multilepton + jet multiplicity categorization 0
- Fit $p_T(\ell j)_0$ or $p_T(Z)$ variable: sum of the momenta of the pair of 0 jets/leptons with the largest $p_{\tau} \rightarrow high$ sensitivity to tails for most operators
- 26 WC fitted together → analyze different processes all together 0

tt+X: toward likelihood publication

Very challenging fit given the **26 POIs** and **178** analysis bins: published 1D/2D of WCs

Towards publication of the full profiled likelihood over the WC:

- Proof-of-concept developed on previous iteration of tt+X analysis (doi:JHEP03(2021)095)
- Trained a neural network to save the likelihood function around the SM point in 16D (WCs POIs)
 - Very fast high dimensional evaluation
- o It would allows theorists to use the full profiled likelihood instead of 1D/2D scans

- Single lepton + 1 tagged AK8 jet (H→ bb discriminator)
- Targeting EFT effects in tt + boosted H/Z and ttbb
- \circ **3D fit**: AK8 jet mass, p_T Z/H candidate, and DNN discriminating tt+bb from ttH/Z
- Measuring 8 top+boson operators (all of them but CtG)
- First analysis to explore EFT effect in the "background": C_{Wb} WC in tt+bb

tt+bb postfit yield observed higher than SM → using most update Powheg 4FS prediction

CMS

138 fb⁻¹ (13 TeV)

- Reported upper limits on ttZ/H differential XS and **1D/2D CI of 8 WC.**
- Tension in $C_{t\phi}$ correlated to upper postfit deviation of tt+bb yield

Scan the three pairs of WCs that exhibit the largest postfit correlations $(c_{\varphi t}, c_{\varphi Q}^-)$ $(c_{\varphi Q}^3, c_{\varphi Q}^-)$ (c_{tW}, c_{tZ})

EFT in Higgs Physics

Analysis approaches:

- Matrix element observables (MELA)
- Re-interpretation of inclusive and differential XS
- STXS framework

Parametrizations:

- Anomalous couplings
- Higgs Effective Lagrangian (HEL) model
- more recently Warsaw basis in SMEFT

In this talk:

- Recent H->тт AC analysis
- STXS pre-legacy Run2 combination

Higgs anomalous couplings

Direct analysis following the **anomalous couplings (AC)** parametrization → target ggH and VBS Higgs productions

Limits on AC parameters can be rotated to Warsaw basis WC limits.

AC approach/SMEFT approach 1 Anomalous coupling:

 $\tilde{\kappa}_{\mathsf{f}} \colon \mathsf{CP}$

AC approach $a_{i}^{ZZ}=a_{i}^{WW} \qquad SU(2) \times U(1)$ 4 anomalous couplings: $a_{2} \text{ (CP)} \qquad 3 \text{ anomalous couplings:}$ $a_{3} \text{ (CP)} \qquad a_{41} \text{ (CP)}$ $a_{41}^{ZY} \text{ (CP)} \qquad a_{41} \text{ (CP)}$

$$\begin{split} A(\mathrm{HVV}) &= \frac{1}{v} \left[a_{1}^{\mathrm{VV}} + \frac{\kappa_{1}^{\mathrm{VV}} q_{\mathrm{V1}}^{2} + \kappa_{2}^{\mathrm{VV}} q_{\mathrm{V2}}^{2}}{\left(\Lambda_{1}^{\mathrm{VV}}\right)^{2}} + \frac{\kappa_{3}^{\mathrm{VV}} (q_{\mathrm{V1}} + q_{\mathrm{V2}})^{2}}{\left(\Lambda_{Q}^{\mathrm{VV}}\right)^{2}} \right] m_{\mathrm{V1}}^{2} \epsilon_{\mathrm{V1}}^{*} \epsilon_{\mathrm{V2}}^{*} \\ &\quad + \frac{1}{v} a_{2}^{\mathrm{VV}} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + \frac{1}{v} a_{3}^{\mathrm{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu} \,, \end{split}$$

$$f_{CP}^{\mathrm{Hff}} = \frac{|\tilde{\kappa}_{\mathrm{f}}|^2}{|\kappa_{\mathrm{f}}|^2 + |\tilde{\kappa}_{\mathrm{f}}|^2} \operatorname{sign}\left(\frac{\tilde{\kappa}_{\mathrm{f}}}{\kappa_{\mathrm{f}}}\right)$$

Observables: XS fractions

$$f_{ai} = \frac{|a_i|^2 \sigma_i}{\sum_{j=1,2,3...} |a_j|^2 \sigma_j} \operatorname{sign}\left(\frac{a_i}{a_1}\right)$$

- Matrix Element Method (MEM) to isolate BSM effects
 - MELA tool using JHUGEN generator
 - Encode maximal information in a limited number of theory-driven observables
- $\mathcal{D}_{\text{BSM}} = \frac{\mathcal{P}_{\text{SM}}(\vec{\Omega})}{\mathcal{P}_{\text{SM}}(\vec{\Omega}) + \mathcal{P}_{\text{BSM}}(\vec{\Omega})},$

Coupling	Discriminant
a_3^{gg}	$\mathcal{D}_{0-}^{ ext{ggH}}$
a_3	\mathcal{D}_{0-}
a_2	$\mathcal{D}_{0\mathrm{h}+}$
$\kappa_1 \\ \kappa_2^{Z\gamma}$	$\mathcal{D}_{\Lambda 1}$
$\kappa_2^{Z\gamma}$	$\mathcal{D}_{\Lambda 1}^{Z\gamma}$

Most stringents CP violations limits in ggH

CMS

35.9-137 fb⁻¹ (13 TeV)

Observed ○ Observed (other c, = 0)

Latest public result: partial Run2 combination in the STXS framework

- Inputs: $H \to \gamma \gamma$, 4*l*, *lvlv*, *bb*, $\tau \tau$, $\mu \mu$ and $ttH \to \text{multilepton } H \to \tau \tau$, *WW*, *ZZ*

Higgs Effective Lagrangian (HEL) model: not trivial to compare with Warsaw basis results

Measured cG, cA, cu, cd, cl, cHW, cWW, cB, other WV fixed to 0.

Results consistent with SM

Acceptance effects **not taken** into account

A lot of **improvements** and new developments ongoing and not yet public

- All channels included
- Updated parametrization
- Acceptance corrections
- Improved tools for re-interpretations

More news soon!

EFT in EWK Physics

Analysis approaches:

- differential XS interpretation
- dedicated analyses optimized for BSM

Parametrizations:

- aQGCs, aTGCs
- dim-6 Warsaw basis
- dim-8 Eboli and other bases

In this talk:

- W+y differentials
- Wγ + jets VBS

- \circ $ff \rightarrow W_{\tau}V_{\tau}$ have different helicities for SM and BSM:
 - interference effects cancels out for inclusive observables like photon p_T
- "Interference resurrection": measure decay angles of the final state fermions in Wγ CM frame

- VBS is ideal to measure anomalous quartic gauge couplings (aQGC)
 - dim-8 EFT operators
- o Interference between EW Wγ and QCD irreducible background fully taken into account
- Most stringent limits to date on the aQGC parameters $f_{M,2-5}/\Lambda^4$ and $f_{T,6-7}/\Lambda^4$

Expected limit	Observed limit	$U_{\rm bound}$
$-5.1 < f_{M,0}/\Lambda^4 < 5.1$	$-5.6 < f_{M,0}/\Lambda^4 < 5.5$	1.7
$-7.1 < f_{M,1}/\Lambda^4 < 7.4$	$-7.8 < f_{M,1}/\Lambda^4 < 8.1$	2.1
$-1.8 < f_{M,2}/\Lambda^4 < 1.8$	$-1.9 < f_{M,2}/\Lambda^4 < 1.9$	2.0
$-2.5 < f_{M.3}/\Lambda^4 < 2.5$	$-2.7 < f_{M,3}/\Lambda^4 < 2.7$	2.7
$-3.3 < f_{M,4}/\Lambda^4 < 3.3$	$-3.7 < f_{M.4}/\Lambda^4 < 3.6$	2.3
$-3.4 < f_{M.5}/\Lambda^4 < 3.6$	$-3.9 < f_{M.5}/\Lambda^4 < 3.9$	2.7
$-13 < f_{M.7}/\Lambda^4 < 13$	$-14 < f_{M7}/\Lambda^4 < 14$	2.2
$-0.43 < f_{T,0}/\Lambda^4 < 0.51$	$-0.47 < f_{T,0}/\Lambda^4 < 0.51$	1.9
$-0.27 < f_{T,1}/\Lambda^4 < 0.31$	$-0.31 < f_{T,1}/\Lambda^4 < 0.34$	2.5
$-0.72 < f_{T,2}/\Lambda^4 < 0.92$	$-0.85 < f_{T,2}/\Lambda^4 < 1.0$	2.3
$-0.29 < f_{T.5}/\Lambda^4 < 0.31$	$-0.31 < f_{T.5}/\Lambda^4 < 0.33$	2.6
$-0.23 < f_{T.6}/\Lambda^4 < 0.25$	$-0.25 < f_{T.6}/\Lambda^4 < 0.27$	2.9
$-0.60 < f_{T,7}/\Lambda^4 < 0.68$	$-0.67 < f_{T,7}/\Lambda^4 < 0.73$	3.1

22/05/2023

Conclusions

- EFT analyses are experimentally challenging
 - → Global effects on many processes and observables
 - → Both effects in the tails and in the bulk (angular observables)
- CMS is exploring many different paths in EFT:
 - → Direct and indirect measurements
 - Broad combinations of channels and dedicated measurements
 - → Optimised observables bases on MEM or machine learning for best sensitivity
- Combination (within CMS and with ATLAS) needed to extract best limits and reduce flat directions

Backup

SMEFT tools

Slides from I. Brivio

Brivio 2012.11343 (7)

Brivio, Jiang, Trott 1709.06492

- only LO → most used for EW Higgs, diboson...
- full Warsaw basis. CP even + odd, includes all m_f and y_f
- 5 flavor structures × 2 EW input schemes
- ▶ includes hgg(g), $h\gamma\gamma$, $hZ\gamma$ SM interactions in $m_t \to \infty$ limit
- includes *linear* SMEFT corrections in propagators $(\delta m, \delta \Gamma)$ of top, Higgs and EW bosons

SMEFT@NLO

Degrande, Durieux, Maltoni, Mimasu, Vryonidou 2008.11743

- ▶ allows $\frac{\mathsf{NLO}\ \mathsf{QCD}}{\mathsf{QCD}}$ \rightarrow most used for **top**, **ggF**...
- ▶ CP even, 5 flavor scheme (only $m_t, y_t \neq 0$)
- In flavor structure: $U(3)_d \times U(2)_u \times U(2)_q \times U(1)_{l+e}^3$
- EW inputs: $\{G_F, m_Z, m_W\}$

others: HEL Alloul, Fuks, Sanz 1310.5150, BSMC Fuks, Matawari, dim6top Durieux, Zhang 1802.07237...

Ilaria Brivio (ITP Heidelberg)

EFT tools and global fits

7/14

CMS Analysis	Channel	Measurement	Combined with	Reference
HIG-19-009	On-shell H→ZZ	HVV, Hgg, Htt	[Htt] H→γγ [<u>HIG-19-013]</u>	PRD 104 (2021) 052004
HIG-21-013	Off-shell H→ZZ	HVV	On-shell H→ZZ	NP (2022) 01682
HIG-20-007	Н⊸тт	HVV, Hgg, Htt	On-shell H \rightarrow ZZ and H $\rightarrow\gamma\gamma$	arXiV: 2205.05120 (Accepted by PRD)
HIG-21-006	ttH and tH multilepton	Htt	On-shell $H \rightarrow ZZ$ and $H \rightarrow \gamma \gamma$	arXiv: 2208.02686 (Accepted by JHEP)
HIG-20-006	Н→тт	Нтт	-	JHEP 06 (2022) 012

$$\begin{split} A(\mathrm{HV_1V_2}) &= \frac{1}{v} \left[a_1^{\mathrm{VV}} + \frac{\kappa_1^{\mathrm{VV}} q_{\mathrm{V1}}^2 + \kappa_2^{\mathrm{VV}} q_{\mathrm{V2}}^2}{\left(\Lambda_1^{\mathrm{VV}}\right)^2} + \frac{\kappa_3^{\mathrm{VV}} (q_{\mathrm{V1}} + q_{\mathrm{V2}})^2}{\left(\Lambda_Q^{\mathrm{VV}}\right)^2} \right] m_{\mathrm{V1}}^2 \epsilon_{\mathrm{V1}}^* \epsilon_{\mathrm{V2}}^* \\ &\quad + \frac{1}{v} a_2^{\mathrm{VV}} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + \frac{1}{v} a_3^{\mathrm{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu}, \\ \\ \mathcal{L}_{\mathrm{hvv}} &= \frac{h}{v} \left[(1 + \delta c_w) \frac{g^2 v^2}{2} W_\mu^+ W_\mu^- + (1 + \delta c_z) \frac{(g^2 + g'^2) v^2}{4} Z_\mu Z_\mu \right. \\ &\quad + c_{ww} \frac{g^2}{2} W_{\mu\nu}^+ W_{\mu\nu}^- + \tilde{c}_{ww} \frac{g^2}{2} W_{\mu\nu}^+ \tilde{W}_{\mu\nu}^- + c_{w\Box} g^2 \left(W_\mu^- \partial_\nu W_{\mu\nu}^+ + \mathrm{h.c.} \right) \\ &\quad + c_{gg} \frac{g_s^2}{4} G_{\mu\nu}^a G_{\mu\nu}^a + c_{\gamma\gamma} \frac{e^2}{4} A_{\mu\nu} A_{\mu\nu} + c_{z\gamma} \frac{e\sqrt{g^2 + g'^2}}{2} Z_{\mu\nu} A_{\mu\nu} + c_{zz} \frac{g^2 + g'^2}{4} Z_{\mu\nu} Z_{\mu\nu} \\ &\quad + \tilde{c}_{zg} g^2 \frac{g_s^2}{4} G_{\mu\nu}^a \tilde{G}_{\mu\nu}^a + \tilde{c}_{\gamma\gamma} \frac{e^2}{4} A_{\mu\nu} \tilde{A}_{\mu\nu} + \tilde{c}_{z\gamma} \frac{e\sqrt{g^2 + g'^2}}{2} Z_{\mu\nu} \tilde{A}_{\mu\nu} + \tilde{c}_{zz} \frac{g^2 + g'^2}{4} Z_{\mu\nu} \tilde{Z}_{\mu\nu} \right], \end{split}$$

- Most stringents CP violations limits in ggH: excludes a pure CP-odd scenario in ggH with a significance of 2.4 s.t.d
- Limits can be rotated to Warsaw bases with tools like Rosetta, JHUGENLexicon
- Also combined with H->4l and ttH, $H\rightarrow yy/$ multilepton, analyses

Top dim6top basis

arXiv:1010.6304

Often tightened → same top+lepton coupling for three generations

- Wilson Coefficients:
- $\hat{\mu}_t \propto c_{tG}$
- $\hat{d}_t \propto c_{tG}^I$
- $\left(\hat{c}_{VV} \propto \left(c_{tq}^8 + c_{Qq}^{(8,1)}\right)/2 + \left(c_{tu}^8 + c_{td}^8 + c_{Qu}^8 + c_{Qd}^8\right)/4$

$$\hat{c}_{AA} \propto -\left(c_{tq}^8 - c_{Qq}^{(8,1)}\right)/2 + \left(c_{tu}^8 + c_{td}^8 - c_{Qu}^8 - c_{Qd}^8\right)/4$$

$$\hat{c}_{AV} \propto \left(c_{tq}^8 - c_{Qq}^{(8,1)}\right)/2 + \left(c_{tu}^8 + c_{td}^8 - c_{Qu}^8 - c_{Qd}^8\right)/4$$

$$\hat{c}_{VA} \propto -\left(c_{tq}^8 + c_{Qq}^{(8,1)}\right)/2 + \left(c_{tu}^8 + c_{td}^8 + c_{Qu}^8 + c_{Qd}^8\right)/4$$

$$\hat{c_1} \propto \left(c_{tu}^8 - c_{td}^8\right)/2 + \left(c_{Qu}^8 - c_{Qd}^8\right)/2 + c_{Qq}^{(8,3)}$$

$$\hat{c}_2 \propto (c_{tu}^8 - c_{td}^8)/2 - (c_{Qu}^8 - c_{Qd}^8)/2 + c_{Qq}^{(8,3)}$$

$$\hat{c}_3 \propto (c_{tu}^8 - c_{td}^8)/2 - (c_{Qu}^8 - c_{Qd}^8)/2 - c_{Qq}^{(8,3)}$$

- 42 (+11 CP violating) independent operators
- Up to 75 if considering independent couplings to lepton generations

4-fermion operators

4-heavy-quark operators → 11 (+2 CPV)

Two-heavy-two-light operators →14 operators

Two-heavy-two-lepton operators \rightarrow (8 + (3 CPV)) x 3

Heavy quark + boson operators → 9 (+ 6 CPV)

STXS framework

Template cross sections with binning motivated by

- Sensitivity to NP
- Avoidance of large theory uncertainties
- Close matching to experimental selections
- Common production mode binning across decay channels

HIG-19-015

= 0-jet