Experimental aspects from Heavy Flavour in EFT

LHCP 2023, Belgrade, Serbia, 22/05/23

Patrick Owen, on behalf of the LHCb collaboration

Heavy flavour physics

Precision frontier physics via the decays of heavy flavour (b and c) hadrons.

- Interesting because:
 - Complementary to direct searches/high PT precision due to reduced production of beauty/charm quarks.
 - Complementary to low energy physics as probe 2nd/3rd generation fermion couplings.
 - Experimental reach significantly improve on short timescale (LHCb, CMS, ATLAS, Belle-II, BES-III ..).
- Main challenge: Low energy QCD.
 - Comparison of experiment and SM often complicated by hadronic effects.
 - Rely on non-perturbative QCD techniques (e.g. Lattice) theoretically challenging.

The Weak Effective Theory (WET)

Typically work at a different EFT compared to high-PT physics.

Typical operators

Rare decays
$$(b \rightarrow s, d\ell\ell)$$

b/c-hadron mass scale (WET).

$$O_{7}^{(\prime)} = \frac{m_{b}}{e} (\bar{s}\sigma_{\mu\nu}P_{R(L)}b)F^{\mu\nu}$$

$$\mathcal{O}_{9}^{\ell} = (\bar{s}_{L}\gamma_{\mu}b_{L})(\bar{\ell}\gamma^{\mu}\ell) , \quad \mathcal{O}_{10}^{\ell} = (\bar{s}_{L}\gamma_{\mu}b_{L})(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell)$$

$$\mathcal{O}_{9}^{\ell\prime} = (\bar{s}_{R}\gamma_{\mu}b_{R})(\bar{\ell}\gamma^{\mu}\ell) , \quad \mathcal{O}_{10}^{\ell\prime} = (\bar{s}_{R}\gamma_{\mu}b_{R})(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell)$$

$$\mathcal{O}_{\hat{S}}^{\ell} = (\bar{s}_{L}b_{R})(\bar{\ell}_{R}\ell_{L}) , \quad \mathcal{O}_{\hat{S}}^{\ell\prime} = (\bar{s}_{R}b_{L})(\bar{\ell}_{L}\ell_{R}) .$$

Semileptonic decays

$$\mathcal{O}_{C_{V_L}} = \bar{c}_L \gamma^{\mu} b_L \, \bar{\ell}_L \gamma_{\mu} \nu_L \,, \qquad \mathcal{O}_{C_{S_L}} = \bar{c}_R b_L \, \bar{\ell}_R \nu_L \,, \\ \mathcal{O}_{C_{V_R}} = \bar{c}_R \gamma^{\mu} b_R \, \bar{\ell}_L \gamma_{\mu} \nu_L \,, \qquad \mathcal{O}_{C_{S_R}} = \bar{c}_L b_R \, \bar{\ell}_R \nu_L \,, \\ \mathcal{O}_{C_{T_L}} = \bar{c}_R \sigma^{\mu \nu} b_L \, \bar{\ell}_R \sigma_{\mu \nu} \nu_L \,.$$

Why directly fit WC?

Flavour observables are (usually) model independent - why fit WC?

Broadly two reasons

Rare decays: Exploit full information

Semileptonics: Avoid unfolding of observables

Observables binned in kinematic regions (e.g. q²).

Fitting WC allows to perform unbinned fits:

Gain information lost in the integration.

Allows to fit hadronic model directly in data.

Observables *not* model dependent in some cases (semitauonic decays)

Signal (red) kinematics fixed to SM.

q² here suffers from considerable resolution

Fitting for WC in this case **improves** interpretability.

Today: go through these routes and point out high-p_T connections.

Patrick Owen LHCP 2023

$b \rightarrow (s,d)\ell\ell$ decays

For latest status see F. Reiss talk at plenary III

Rare $b \to (s, d)\ell\ell$ decays are fully reconstructed.

Main SM operators

$$\mathcal{O}_9^{\ell} = (\bar{s}_L \gamma_\mu b_L)(\bar{\ell} \gamma^\mu \ell)$$

$$\mathcal{O}_9^{\ell} = (\bar{s}_L \gamma_\mu b_L)(\bar{\ell} \gamma^\mu \ell) \,, \quad \mathcal{O}_{10}^{\ell} = (\bar{s}_L \gamma_\mu b_L)(\bar{\ell} \gamma^\mu \gamma_5 \ell)$$

Long-distance contributions absorbed into the WC C₉.

Direct fit to q² (and C_{9,10})

Previously were comparing binned dBF/dq² measurements to theory.

Unbinned method EUR. PHYS. J. C77 (2017) 161

Fitting unbinned: Gain access to crucial region which determines key hadronic nuisance parameters.

Measurement not without controversy due to model dependence - updates ongoing with full run II data using improved models.

This remains LHCb's only direct WC fit so-far, many more are coming soon.

High pt connection

Measurements sensitive to particles up to O(1-10TeV) scale (e.g. Z', leptoquark).

E.g. can manifest as di-lepton mass resonance.

Example for $b \to d\ell\ell$, complementarity of fields visible on constraints available in SMEFT operators.

For more details see A. Smolkovic

R(D(*)) measurements

R. Mohammed's talk

$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau\nu)}{\mathcal{B}(B \to D^{(*)}\ell\nu)}$$

- Determined from a 3D fit.
- Signal assumed to be SM-like when extracting R(D*).
 - Inconsistent!
- Less of an issue at Bfactories due to kinematic tagging.
- E.g: effect of Tensor operator on D* momentum distribution.

How to deal with this

- Unfolding and background subtraction out of the question.
- One possible way is the HAMMER (Helicity Amplitude Module for Matrix Element Reweighting) tool:
 - Allows for faster reweighting of templates.
- Have interfaced this with RooFit [2022]
 JINST 17 T04006] in order to get it integrated into our analyses.
 - For next round mainly using for systematics, then we move onto WC fitting.

The idea is to directly fit Wilson Coefficients and provide likelihood surface.
 (Still vulnerable to QCD updates).

High pt connection

Measurements sensitive to particles up to O(1TeV) scale (e.g. W', leptoquark).

Can manifest as di-lepton enhancement (can be non-resonant).

L. Allwicher, D.A. Faroughy, F. Jaffredo, O. Sumensari, F. Wilsch

SMEFT fit

Mixing constraints

- Mostly focussed on $\Delta(F)=1$ processes as more motivation to fit WC.
 - However, in general $\Delta(F)=2$ constraints probe higher scales.
- Some operators completely dominated by mixing constraints.

 Also see complementarity of mixing constraints between up and down sectors.

Summary

- Heavy flavour physics been parameterised in WET for a long time.
- Starting to get into direct fits of WC.
 - Exploit full information and determine theory nuisances.
 - Relax assumptions in fits with missing energy.
- Complementary to high p_T but there are a few connections to direct searches.
- Reinterpetrability takes non-trivial work to preserve.

12

Patrick Owen LHCP 2023