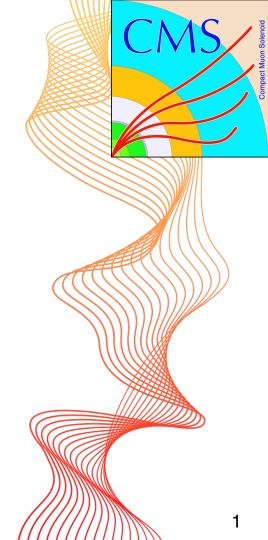
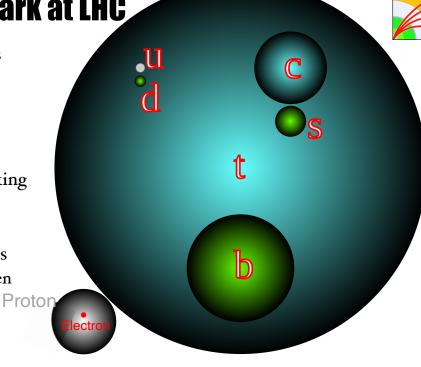


Ashley Marie Parker (Northeastern University)


On Behalf of the CMS Collaboration

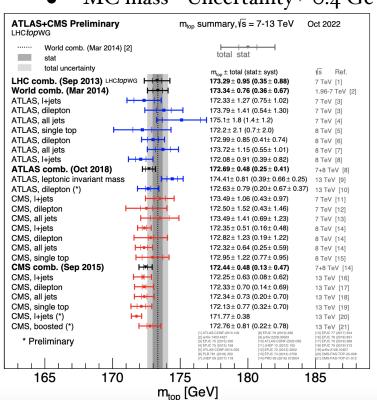
The 11th annual conference on Large Hadron Collider Physics

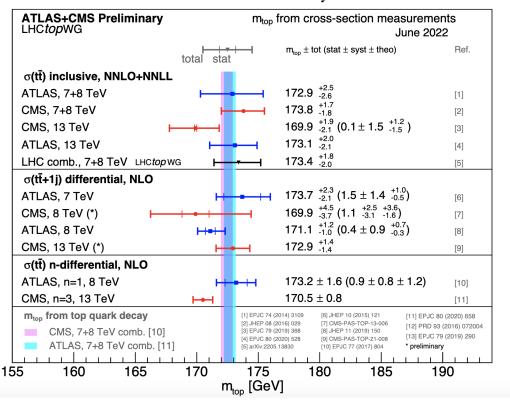
May 25th, 2023


Belgrade, Serbia

Introduction to the Top Quark at LHC

- The top quark is one of the most fascinating particles due to its unique properties.
 - o Heaviest of the quarks. But why?
 - -Mass of a gold atom
 - Largest Yukawa coupling of all particles
 - Essential to Electroweak symmetry breaking
 - Top decays before hadronization
 - Lifetime of $\sim 5 * 10^{-25}$ seconds
 - This allows study of bare quark properties
- -120M top-anti top pairs per experiment during run 2, even more in run 3!
 - This large amount of data allows for precise measurements of the mass, width, charge asymmetry and spin correlation of the Top quark

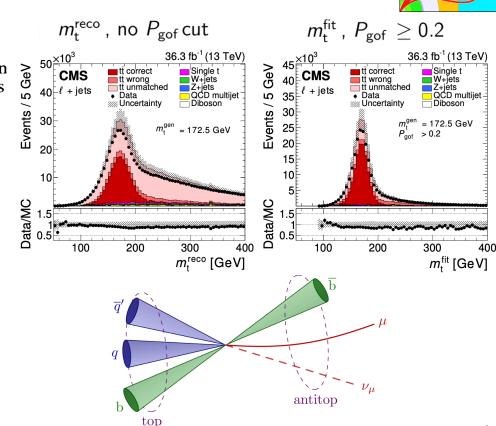



Direct vs Indirect Measurements of Top Mass

CMS promote unrul traductor

- Direct
 - MC mass Uncertainty 0.4 GeV

- Indirect
 - Pole mass Uncertainty -0.8 GeV

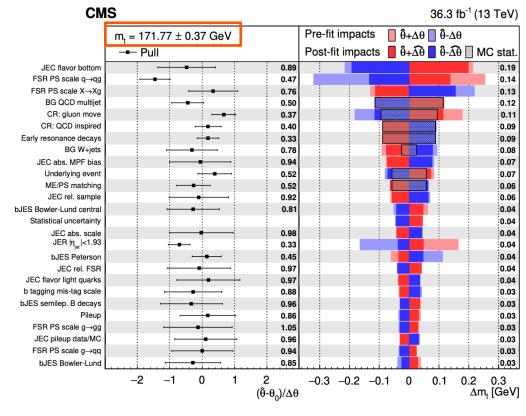


Profile Likelihood based Top Mass

- Selected events with 1 lepton + 4 jets
- Kinematic fit with input: four-momenta of the lepton and of the four leading jets, p_T^{miss} , and the resolutions of these variables
- By applying kinematic fit and goodness of fit cut, $P_{gof} = exp(\frac{-\chi^2}{2})$, improvements are made in:
 - Jet-Parton assignment
 - Signal fraction
 - Resolution of invariant top mass distribution
- 5D Maximum likelihood fit to determine top mass
 - Likelihood depends on the top mass and nuisance parameters which incorporate the systematic uncertainties



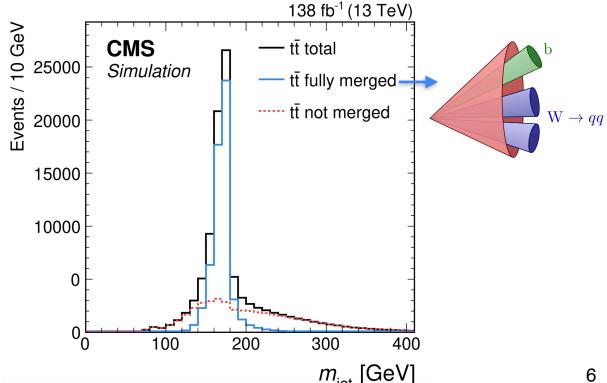
Profile Likelihood based Top Mass cont.


- This approach significantly improves the precision over previous measurements
 - Jet Energy scale and FSR are dominant uncertainties

	Histog	Set label					
	Observable	Category	1D	2D	3D	4D	5D
c	$m_{ m t}^{ m fit}$	$P_{\rm gof} > 0.2$	×	×	×	×	×
1	$m_{ m W}^{ m reco}$	$P_{\rm gof} > 0.2$		×	×	×	×
,	$m_{\ell \mathrm{b}}^{\mathrm{reco}}$	$P_{\rm gof} < 0.2$			×	×	×
,	$m_{\ell \mathrm{b}}^{\mathrm{reco}}/m_{\mathrm{t}}^{\mathrm{fit}}$	$P_{\rm gof} > 0.2$				×	×
I	$R_{\rm bq}^{ m reco}$	$P_{\rm gof} > 0.2$					×
ontion		$R_{ m bq}^{ m reco} = rac{ ho_{{ m T}_{b1}}^{ m reco} + ho_{{ m T}_{b2}}^{ m reco}}{ ho_{{ m reco}}^{ m reco} + ho_{{ m reco}}^{ m reco}}$					

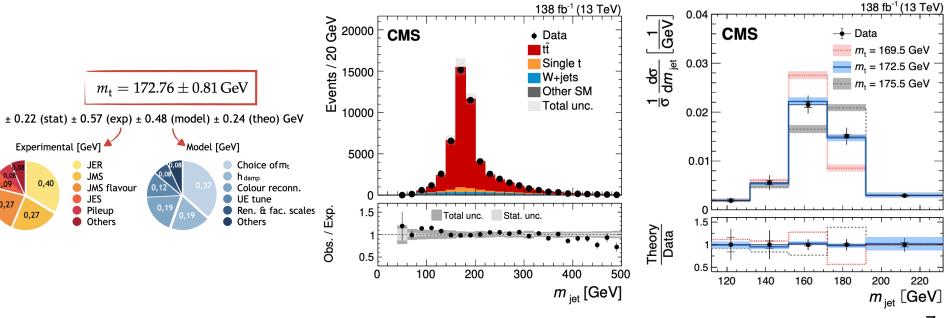
The total predicted uncertainty is reduced by the inclusion of every additional observables.

The biggest improvement comes from including m_{W}^{reco} .



Measurement of Top Mass in Boosted Tops

- Measurement of the jet mass distribution and top quark mass in hadronic decays of boosted top quarks
- Boosted tops approach a regime in which the MC mass is well defined
- MC studies show top mass distribution at different momenta



Measurement of Top Mass in Boosted Tops cont.

- Obetermined m_t from the unfolded normalised differential $t\bar{t}$ production cross section w.r.t. jet mass
- eXclusive Cone, XCone, jet reconstruction algorithm, with $N_{sub} = 3$ used for boosted top reconstruction
 - \circ Anti- k_T jets were used for identification of b jets and studying influence of FSR on substructure

arXiv:2207,02270

Simulation

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.8

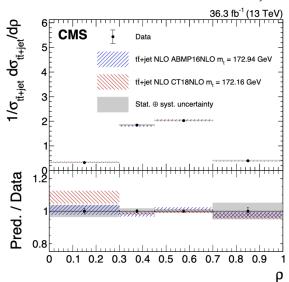
0.7

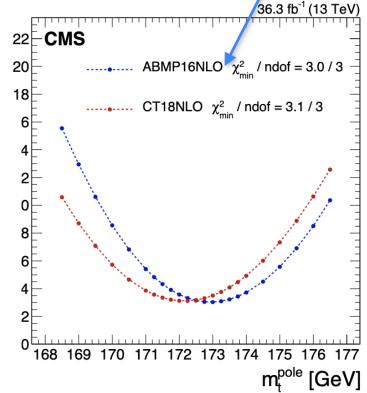
0.6

0.4

0.3

0.1

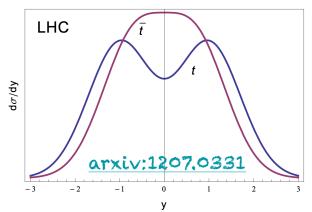

Indirect Measurement of Top Mass


 $m_{\rm t}^{
m pole} = 172.94 \pm 1.27 \, ({
m fit}) \, ^{+0.51}_{-0.43} \, ({
m scale}) \, {
m GeV}$ $m_{\rm t}^{
m pole} = 172.16 \pm 1.35 \, ({
m fit}) \, ^{+0.50}_{-0.40} \, ({
m scale}) \, {
m GeV}.$

- Measurement of the top quark pole mass using $t\bar{t}$ +jet events in the dilepton final state
- Differential cross section as a function of dimensionless mass, ρ , where the scaling constant is m_0 = 170 GeV

Number

Extracted pole mass from 2 different PDF sets

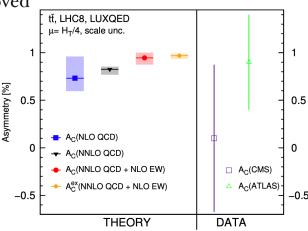


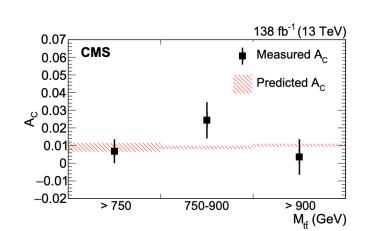
Introduction to Charge Asymmetry with Top Quarks

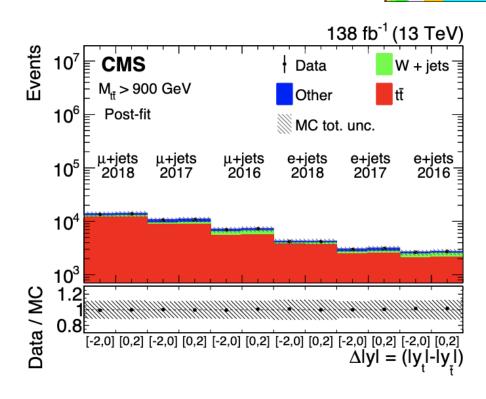
- Measured by comparing rapidity distributions from top and anti-top quarks
- Charge asymmetry measurements show agreement with theoretical predictions
- Important in testing the standard model and searching for BSM physics
- A new 13TeV measurement published last year by CMS drastically improved precision

$$A_{C} = \frac{N(\Delta \mid y \mid > 0) - N(\Delta \mid y \mid < 0)}{N(\Delta \mid y \mid > 0) + N(\Delta \mid y \mid < 0)}$$
with $\Delta \mid y \mid = \mid y_{top} \mid - \mid y_{antitop} \mid$

arxiv:1711.03945

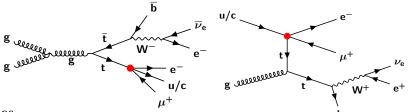


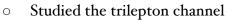

FIG. 1: Inclusive charge asymmetry $A_{\rm C}$ for the LHC at 8 TeV in NLO QCD, NNLO QCD and NNLO QCD + NLO EW versus CMS and ATLAS measurements [29, 30].

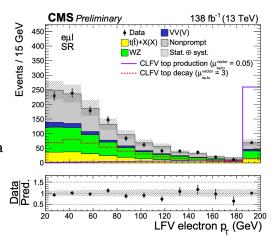


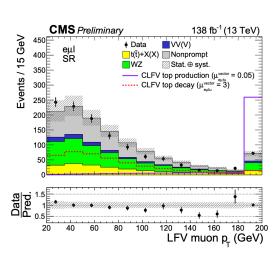
Charge Asymmetry in the Boosted Regime

- CMS measured A_C using lepton + jets events
- Dedicated hadronic and leptonic selections
 - Selection is optimised for top quarks produced with large Lorentz boosts
 - Non isolated leptons, unlike previous CMS results
 - Selected top events in 3 categories: fully merged, partially merged and not merged (see slide 6 for definitions)
- Measured for events with a $t\bar{t}$ invariant mass larger than 750 GeV
- Compared to theoretical prediction with NNLO QCD and NLO EW corrections



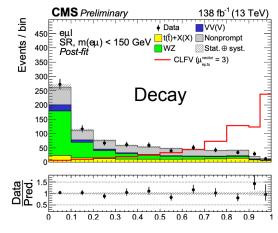

u/c

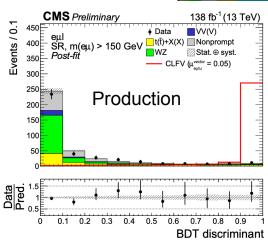

Search for Charged Lepton Flavour Violation

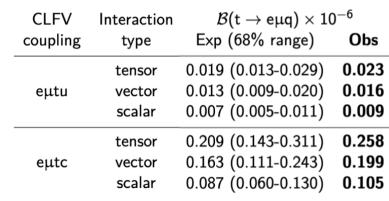


- Includes top production and decay modes
- Set limits on the branching ratio $B(t \to e^{\mp} \mu^{\pm} q)$
 - Here q is an up or charm quark
- Signal is defined by:
 - \circ Opposite charge $e\mu$ pair
 - o 3rd lepton from leptonic top
 - One b jet and o or 1 light jets
- Prompt lepton background estimate with MC
- Non prompt lepton background estimated using a data driven 3D matrix method
- Model independent EFT approach
- Parametrised signal with dimension 6 EFT operators

u/c

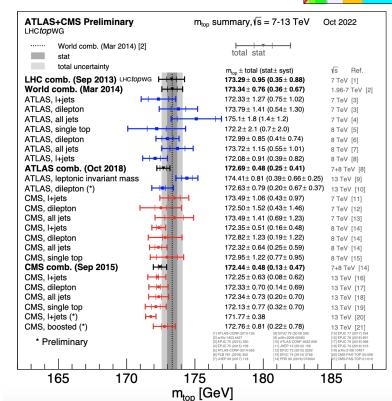





Search for Charged Lepton Flavour Violation cont.

CMS

- BDT used to distinguish signal and background
 - One signal region targets production and another targets decay
 - Upper limits on the Wilson coefficients are converted to upper limits on the branching fraction
 - Most stringent limits to date on this process!



Overview of all CMS TOP results can be found here

- CMS has made significant progress in measuring the mass and properties of the top quark
 - MC vs Pole Mass:
 - The precision on the top MC mass has now reached below 0.4 GeV
 - Pole mass precision has been reduced to -0.8 GeV
 - Pole mass precision has significantly improved but is still -2 times worse than MC mass
 - CMS produced a new charge asymmetry measurement this year!
 - cLFV search from CMS set limits 1 order of magnitude more stringent than previous CMS result!

Thank you for your time 😊

BACKUP

Measurement of Top Mass in Boosted Tops cont.

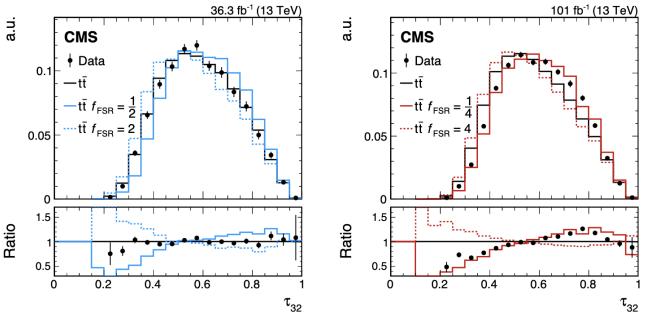


Figure 8: The normalised distributions in τ_{32} for AK8 jets with $m_{\rm jet} > 140\,{\rm GeV}$ from the hadronic decay of boosted top quarks. Shown are distributions for 2016 (left) and the combination of 2017 and 2018 (right). The background-subtracted data are compared to $t\bar{t}$ simulations with the UE tunes CUETP8M2T4 for 2016 and CP5 for the combination of 2017 and 2018, and different values of $f_{\rm FSR}$ are shown as well. The lower panels show the ratio to the $t\bar{t}$ simulation with $f_{\rm FSR}=1$.