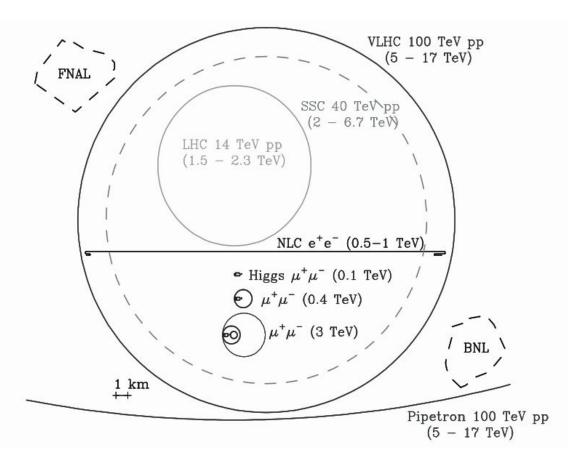
Experimental challenges at a muon collider

LHCP 2023, Belgrade 24/05/2023

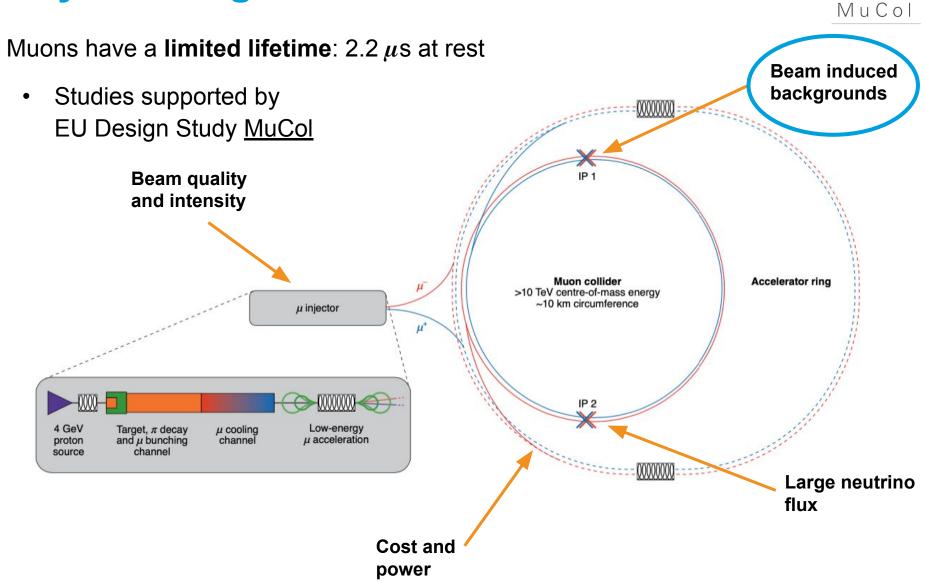
Federico Meloni (DESY), on behalf of the International Muon Collider Collaboration

MuCo

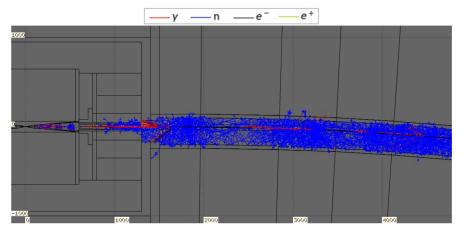

High-energy microscopes

We conventionally pursue HEP research by probing shorter distances with either precision (indirect) or energy (direct)

Muon colliders blur this dichotomy

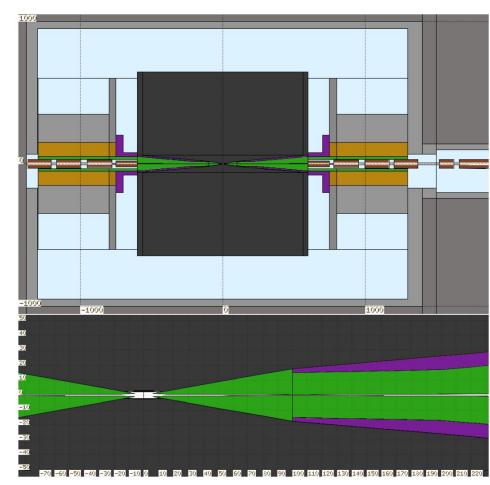

The muon mass (105.7 MeV/c², 207 x e^{\pm} mass) means:

- Negligible synchrotron radiation emission
- Negligible beamstrahlung
 at collision



Major technical challenges

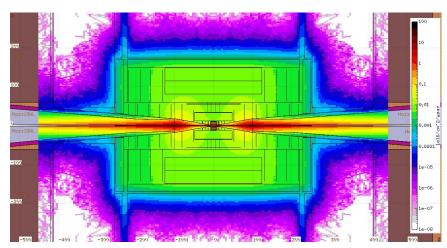
Key challenges


The beam-induced backgrounds (BIB)

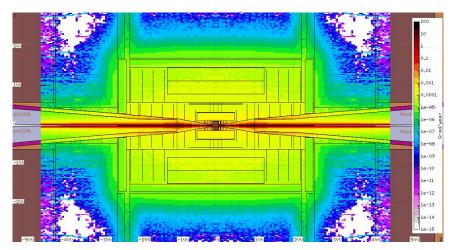
Huge number of particles from muon decays (~10⁵ per metre of lattice) and their byproducts

Need shielding: tungsten nozzles with borated polyethylene (BCH₂) coating

The machine-detector interface is a **unique challenge of Muon Colliders**


Collision paradigm

Circulate two bunches and re-fill when they are depleted


- 1000 times lower collision rate than LHC
- Luminosity increases with the square of beam energy
 - Muon lifetime increases
 - Transverse emittance decreases
- To first approximation, BIB rate does not depend on E

Monte Carlo simulator	MARS15	MARS15	FLUKA	FLUKA	FLUKA
Beam energy [GeV]	62.5	750	750	1500	5000
μ decay length [m]	$3.9\cdot 10^5$	$46.7\cdot 10^5$	$46.7\cdot 10^5$	$93.5\cdot 10^5$	$311.7\cdot 10^5$
$\mu \text{ decay/m/bunch}$	$51.3\cdot10^5$	$4.3\cdot 10^5$	$4.3\cdot 10^5$	$2.1\cdot 10^5$	$0.64\cdot 10^5$
Photons $(E_{\gamma} > 0.1 \text{ MeV})$	$170\cdot 10^6$	$86\cdot 10^6$	$51\cdot 10^6$	$70\cdot 10^6$	$107\cdot 10^6$
Neutrons $(E_n > 1 \text{ MeV})$	$65\cdot 10^6$	$76\cdot 10^6$	$110\cdot 10^6$	$91\cdot 10^6$	$101\cdot 10^6$
Electrons & positrons $(E_{e^{\pm}} > 0.1 \text{ MeV})$	$1.3\cdot 10^6$	$0.75\cdot 10^6$	$0.86\cdot 10^6$	$1.1\cdot 10^6$	$0.92\cdot 10^6$
Charged hadroms $(E_{h^{\pm}} > 0.1 \text{ MeV})$	$0.011\cdot 10^6$	$0.032\cdot 10^6$	$0.017\cdot 10^6$	$0.020\cdot 10^6$	$0.044\cdot 10^6$
Muons $(E_{\mu^{\pm}} > 0.1 \text{ MeV})$	$0.0012\cdot 10^6$	$0.0015\cdot 10^6$	$0.0031\cdot 10^6$	$0.0033\cdot 10^6$	$0.0048\cdot 10^6$

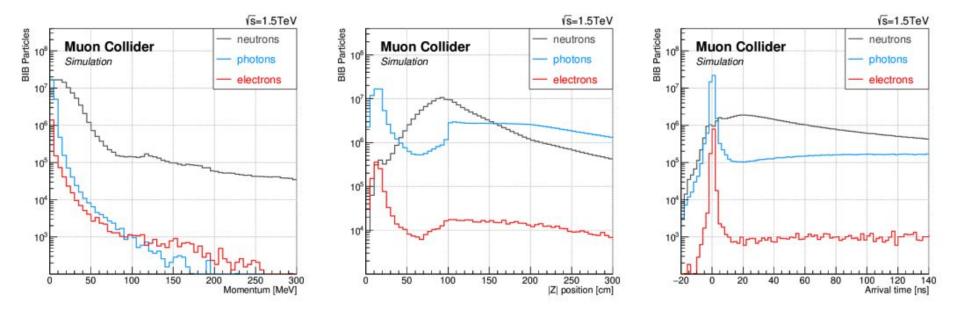
Detection Environment

 $1-MeV-n_{eq}^{2}/cm^{2}$ fluence for 200 days of operation

Total Ionising Dose for 200 days of operation

	Maximum Dose (Mrad)		Maximum Fluence (1 MeV-neq/cm ²)		
	R=22 mm	R=1500 mm	m R=22~mm	R=1500 mm	
Muon Collider	10	0.1	10^{15}	10^{14}	
HL-LHC	100	0.1	10^{15}	10^{13}	

FCC-hh requirements ~10¹⁸ 1 MeV-n_{eq}/cm²


A close look at the tracker

No beam-induced backgrounds

A close look at the tracker

Beam-induced backgrounds

Beam-induced background properties

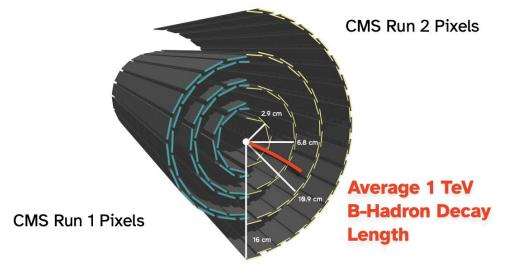
Low momentum

Origin and direction

Timing

<u>1204.6721</u> <u>1905.03725</u>

2105.09116


Physics requirements

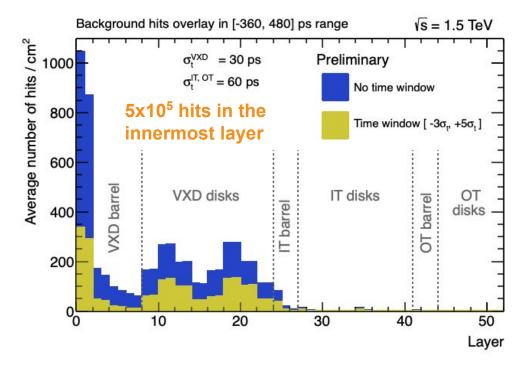
The detectors need to be ready to **measure both TeV-scale particles** (from s-channel processes) **as well as GeV-scale** (from VBF processes)

• Design a detector which is as "unconventional signature-friendly" as possible

Detector sizes need to grow with energy

• Need thicker calorimeters / bigger trackers with high precision in more places

2303.08533


Tracking detectors

Goal: tracker occupancy < 1%

 Other requirements are not unique: low mass/power, radiation tolerance, low noise

On- and off-detector filtering:

- Timing
- Clustering
- Energy deposition
- Local track angle
- Pulse shapes

Detector	Hit Density $[mm^{-2}]$					
Reference	MCD	ATLAS ITk	ALICE ITS3			
Pixel Layer 0	3.68	0.643	0.85			
Pixel Layer 1	0.51	0.022	0.51			

Compared to HL-LHC

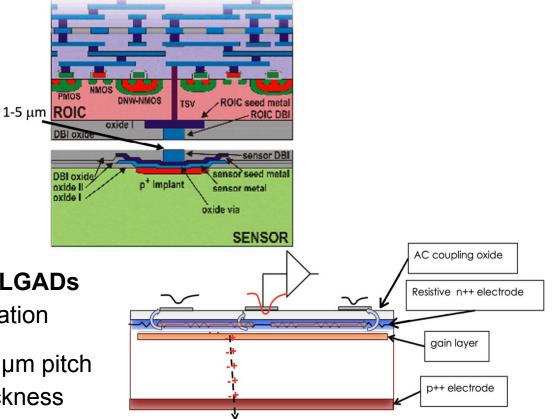
- ~10x hit density
- ~1/1000 times the bunch crossing rate

4D trackers

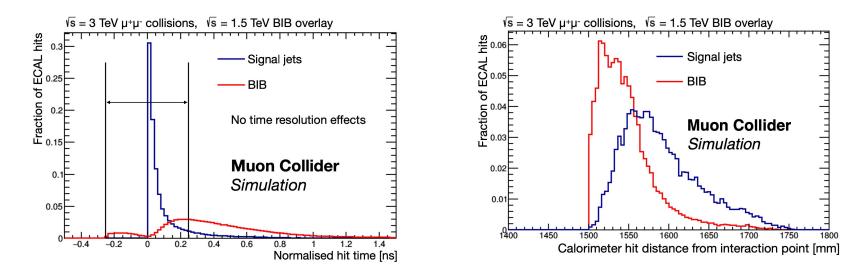
<u>2203.07224</u> PoS Vertex2014 (2015) 045 <u>2011.02410</u>

	Vertex Detector	Inner Tracker	Outer Tracker
Cell type	pixels	macropixels	microstrips
Cell Size	$25\mu\mathrm{m} imes25\mu\mathrm{m}$	$50\mu\mathrm{m} imes 1\mathrm{mm}$	$50\mu\mathrm{m} imes 10\mathrm{mm}$
Sensor Thickness	$50\mu{ m m}$	$100\mu{ m m}$	$100\mu{ m m}$
Time Resolution	$30\mathrm{ps}$	$60\mathrm{ps}$	$60\mathrm{ps}$
Spatial Resolution	$5\mu\mathrm{m} imes 5\mu\mathrm{m}$	$7\mu\mathrm{m} imes90\mu\mathrm{m}$	$7\mu\mathrm{m} imes90\mu\mathrm{m}$

Promising technologies exist


3D-integration: advanced hybrid bonding tech can give < 5 μm pitch and low input capacitance

• 20-30 ps time resolution


Resistive Silicon Detectors/ AC-LGADs

multi-pad signals allow for triangulation

- O(1) μm resolution w/ O(100) μm pitch
- 20 ps resolution w/ 25 µm thickness

Calorimetry

BIB dominated by neutral particles: photons (96%) and neutrons (4%)

On average 300 particles/cm² at the ECAL surface ($\langle E \rangle = 1.7 \text{ MeV}$)

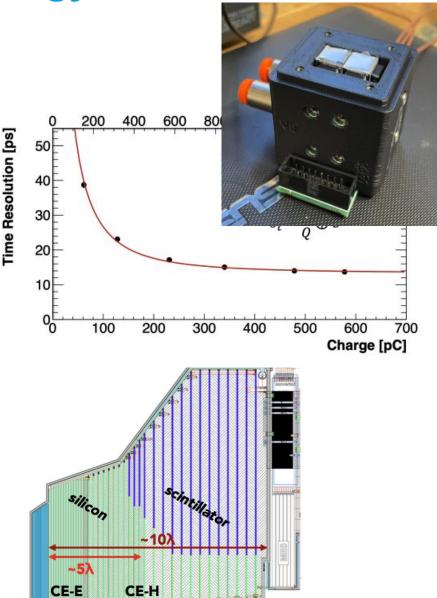
Targets

- High granularity
- Precise hit time measurement O(100ps)
- Longitudinal segmentation
- Good energy resolution $10\%/\sqrt{E}$ for photons and $35\%/\sqrt{E}$ for jets or better

Compared to HL-LHC 25% higher ambient energy per unit area

R&D and **HL-LHC** "technology transfer"

Crilin calorimeter


Semi-homogeneous calorimeter based on Lead Fluoride (PbF₂) crystals

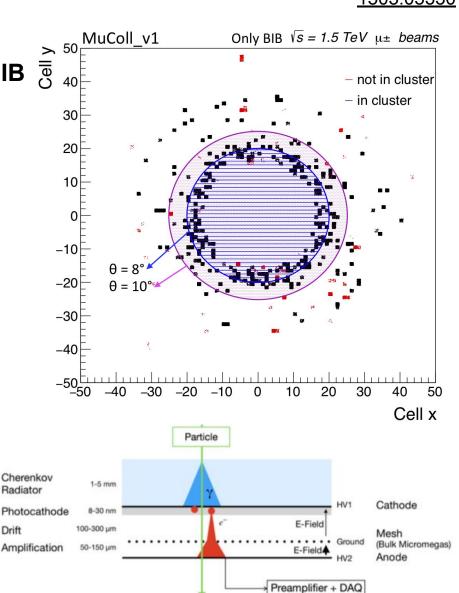
- Segmented longitudinally
- Stackable submodules composed
 of matrices of crystals

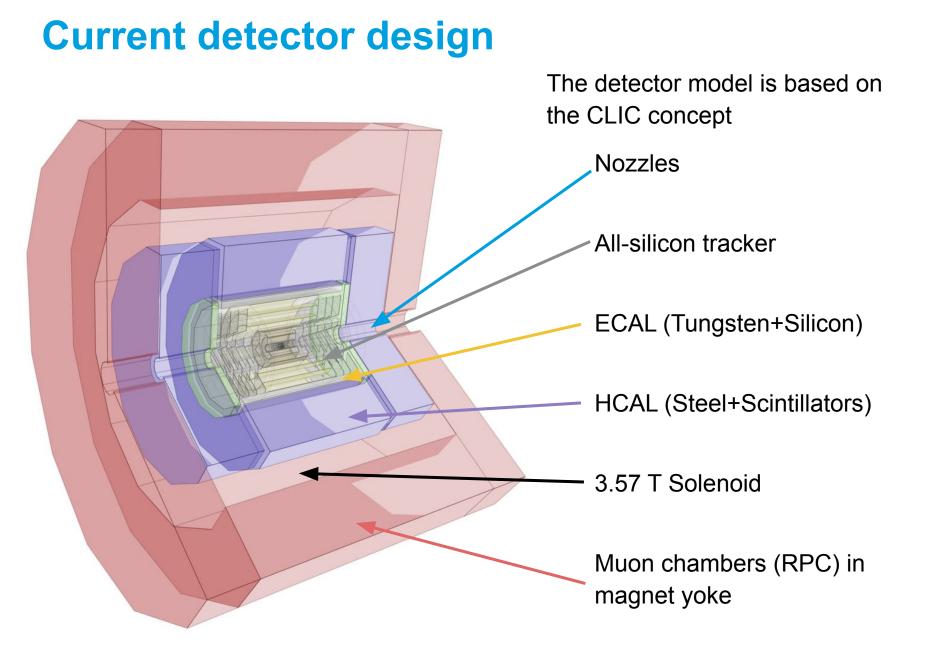
CMS High-granularity Calorimeter

Mix of silicon and scintillator-based high-granularity cells (6.5M channels)

- Large-scale particle flow demonstration (could track BIB contributions)
- Achieves O(10) ps time resolution for multi-MIP signals

<u>1901.03355</u> <u>1503.05330</u>

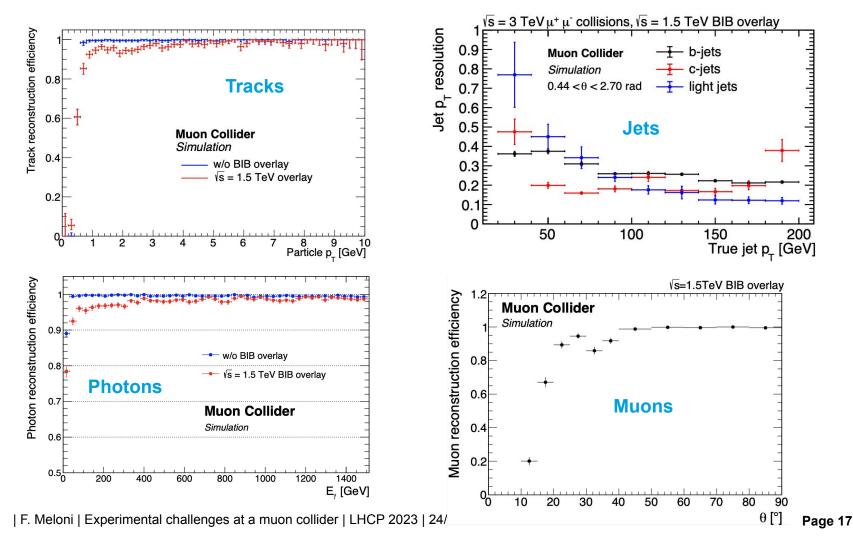

Muon systems


Muon systems are the least affected by BIB

- Most challenging region around the beam axis in the endcaps
- Some technologies (e.g., RPCs), are at the limit of their rate capability
- **Targets** 100 µm spatial resolution < 1 ns time resolution

R&D ongoing, e.g.:

- **PicoSec**: hybrid micromegas + cherenkov, reach 25 ps
- Fast Timing Micropattern (FTM) use multiple drift and amplification gaps to achieve < 1 ns

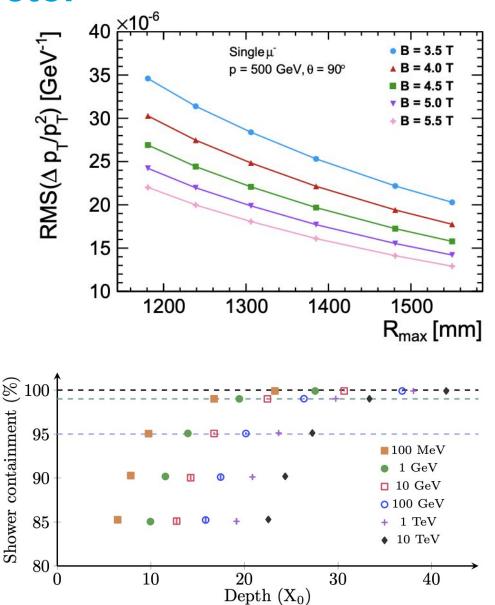


Snapshot of current performance

Achieved "LHC-level" performance without using dedicated techniques

• Huge potential to improve further

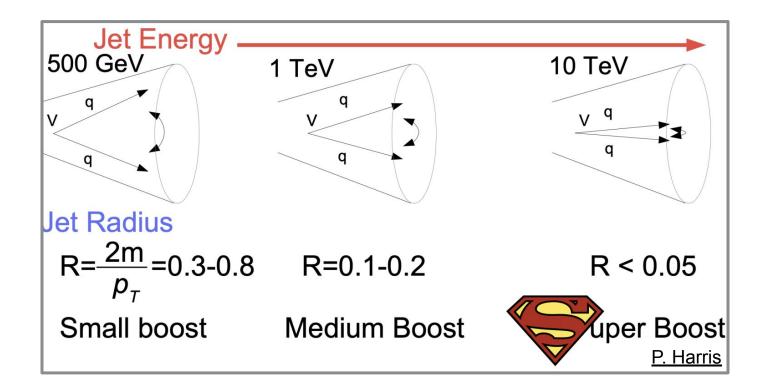
DESY.


CLICdp-Note-2017-001 CERN-FCC-PHYS-2019-0003

Towards a 10 TeV detector

The **3 TeV CLIC-inspired detector is not suitable for 10 TeV**, beyond the required re-optimisation of the machine-detector interface

Design of 10 TeV detector concept started and progressing vigorously


- Starting from basic aspects
- Many opportunities to experiment with new ideas and explore the potential of your favourite technology

Towards 10 TeV reconstruction

The reconstruction algorithms that were designed at 3 TeV are not guaranteed to work at 10 TeV

- Significantly different energy regime
- Higher detector granularity might require new approaches

Summary

The muon collider presents **enormous potential for fundamental physics research** at the energy frontier

Need to develop concept to a maturity level that allows to make informed choices by the next ESPPU and other strategy processes

Physics reach of a multi-TeV µC relies on (among other things) successful detector R&D programme today

The road ahead is filled with challenging and interesting R&D!

Thank you!

Interested?

Join the IMCC physics studies (<u>https://indico.cern.ch/category/12792/</u>) and Detector and MDI (<u>https://indico.cern.ch/category/13145/</u>) communities!

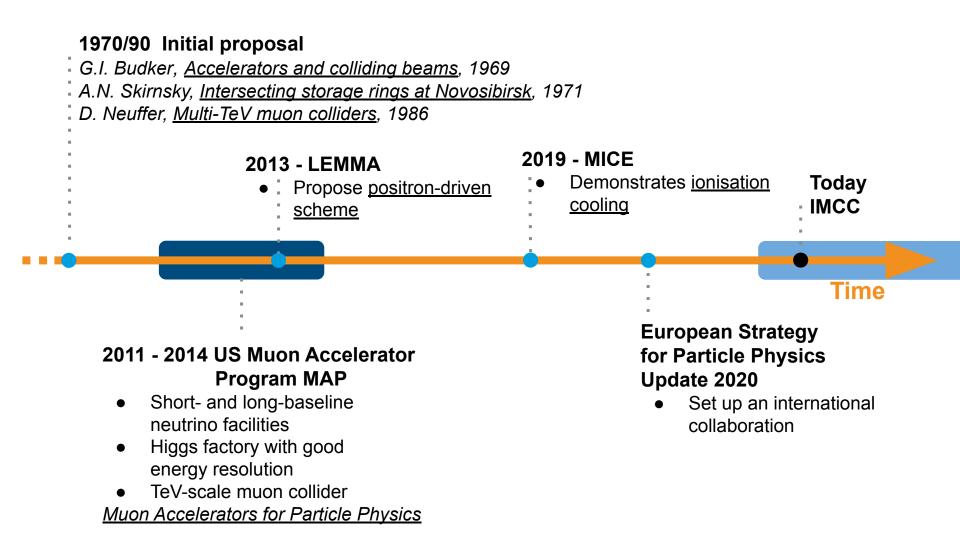
Contact

Federico Meloni DESY-FH federico.meloni@desy.de

Many thanks to S. Jindariani, D. Schulte, and M. Wing for inputs and useful discussions

The 12 miracles challenges

	Target	Status	Notes	Future work
Pulse compression	1-3 ns	SPS does O(1) ns	Need higher intensity. O(30) ns loses only factor 2 in the produced muons.	Refine design, including proton acceleration. Accumulation and compression of bunches.
High-power targets	2 MW	2 MW	Available for neutrino and spallation neutrons. Aim for 4 MW to have margin.	Develop target design for 2 MW, O(1) ns bunches create larger thermal shocks. Prototype in 2030s.
Capture solenoids	15 T	13 T	ITER central solenoid.	Study superconducting cables and validate cooling. Investigate HTS cables.
Cooling solenoids	50 T	30-40 T	30 T leads to a factor 2 worse transverse emittance with respect to design.	Extend designs to the specs of the 6D cooling channel. Demonstrator.
RF in magnetic field	>50 MV/m	65 MV/m	MUCOOL published results. Requires test in non-uniform B.	Design to the specs of 6D cooling. Demonstrator.
6D cooling	10 ⁻⁶	0.9 (1 cell)	MICE result (no re-acceleration). Emittance exchange demonstrated at g-2.	Optimise with higher fields and gradients. Demonstrator.
RCS dynamics	-	-	Simulation. 3 TeV lattice design in place.	Develop lattice design for a 10 TeV accelerator ring.
Rapid cycling magnets	2 T/ms 2 T peak	2.5 T/ms 1.81 T peak	Normal conducting magnets. HTS demonstrated 12 T/ms, 0.24 T peak.	Design and demonstration work. Optimise power management and re-use.
Ring magnets aperture	20 T quads	12-15 T (Nb3Sn)	Need HTS or revise design to lower fields.	Design and develop larger aperture magnets, 12-16 T dipoles and 20 T HTS quads.
Collider dynamics	-	1213	3 TeV lattice in place with existing technology.	Develop lattice design for a 10 TeV collider.
Neutrino radiation	10 μSv/year	125	3 TeV ok with 200 m deep tunnel. 10 TeV requires a mover system.	Study mechanical feasibility of the mover system impact on the accelerator and the beams.
Detector shielding	Negligible	LHC-level	Simulation based on next-gen detectors.	Optimise detector concepts. Technology R&D.


Muon collider target parameters

Parameter	Symbol	Unit	T	arget va	alue	CLIC	
Centre-of-mass energy	$E_{\rm cm}$	TeV	3	10	14	3	1
Luminosity	\mathcal{L}	$10^{34} {\rm cm}^{-2} {\rm s}^{-1}$	1.8	20	40	5.9	
Luminosity above $0.99 \times \sqrt{s}$	$\mathcal{L}_{0.01}$	$10^{34} {\rm cm}^{-2} {\rm s}^{-1}$	1.8	20	40	2	<u> </u>
Collider circumference	$C_{ m coll}$	km	4.5	10	14		Beamstrahlung
Muons/bunch	N	10^{12}	2.2	1.8	1.8	0.0037	
Repetition rate	f_r	Hz	5	5	5	50	
Beam power	$P_{\rm coll}$	MW	5.3	14.4	20	28	
Longitudinal emittance	ϵ_L	MeVm	7.5	7.5	7.5	0.2	
Transverse emittance	ϵ	$\mu { m m}$	25	25	25	660/20	
Number of bunches	n_b		1	1	1	312	
Number of IPs	$n_{ m IP}$		2	2	2	1	
IP relative energy spread	δ_E	%	0.1	0.1	0.1	0.35	
IP bunch length	σ_z	mm	5	1.5	1.07	0.044	
IP beta-function	β	mm	5	1.5	1.07	1	
IP beam size	σ	$\mu { m m}$	3	0.9	0.63	0.04/0.001	

Based on extrapolation of the MAP parameters

 Plan to operate 5 years at each centre-of-mass energy (FCC-hh to operate for 25 years)

A brief history of muon colliders

A new collaboration

Objective

Minternational MUON Collider Collaboration

In time for the next European Strategy for Particle Physics Update, the study aims to establish whether the investment into a full CDR and a demonstrator is scientifically justified.

It will provide a baseline concept, well-supported performance expectations and assess the associated key risks as well as cost and power consumption drivers. It will also identify an R&D path to demonstrate the feasibility of the collider.

Deliverable

Report assessing muon collider potential and describing R&D path to CDR.

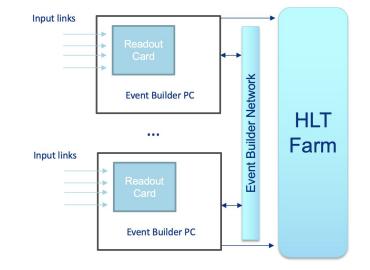
Scope

- Focus on two energy ranges:
 - 3 TeV, with technology ready for construction in 10-20 years
 - 10+ TeV, with more advanced technology
- Explore synergy with other options (neutrino/higgs factory)
- Define R&D path

Readout and DAQ

Instantaneous luminosity of 10³⁴-10³⁵ cm⁻²s⁻¹

Beam crossings every 10 µs


Streaming approach: availability of the full event data \rightarrow better trigger decision, easier maintenance, simplified design of the detector front-end...

	Hit	On-detector filtering	Number of Links (20 Gbps)	Data Rates
Tracker	32-bit	t-t ₀ < 1 ns	~3,000	30 Tb/s
Calorimeter	20-bit	t-t₀< 0.3 ns E>200 KeV	~3,000	30 Tb/s

Table credit: S. Jindariani

Total data rate similar to HLT at HL-LHC

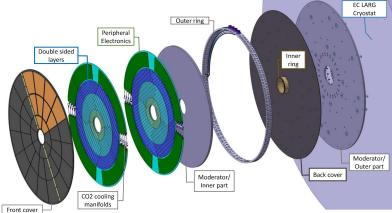
• Streaming operation likely feasible

DESY. | F. Meloni | Experimental challenges at a muon collider | LHCP 2023 | 24/05/2023

Ongoing efforts

Several promising technologies with active R&D:

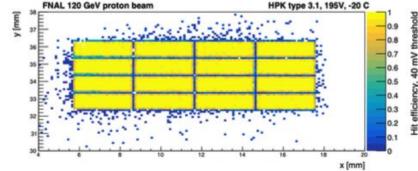
- Monolithic detectors (HV/HR-CMOS) embedded readout
- Low Gain Avalanche Detectors (LGADs) good timing, large pads
- Small "standard" pixels with **3D hybrid bonding** intrinsically radiation hard
- Intelligent sensors

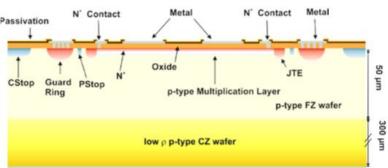

Common challenges for many technologies:

• Services, cooling, low-power ASICs

CMS and ATLAS are building 1st generation 4D-tracking detectors

- Single or two hits per charged particle, and large pixels
- Next generation detectors will be more sophisticated


R&D examples

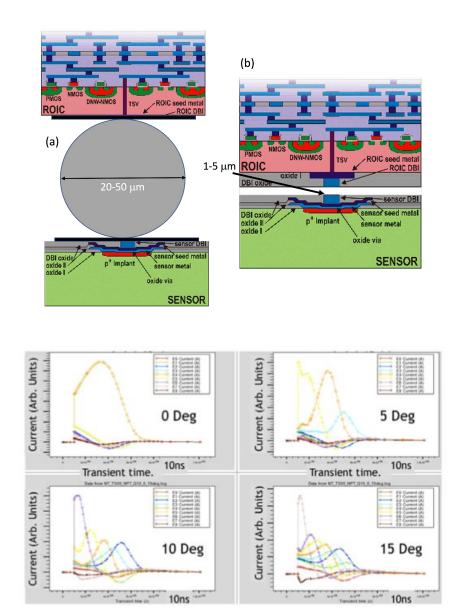

Sensors developed for CMS and ATLAS show high degree of uniformity, excellent time resolution, but are rapidly becoming obsolete.

- Limited fill factor
- Moderate radiation hardness

AC-coupled LGADs

- Remove dead area and improve position resolution via charge sharing
- Fast timing information at per-pixel level
- Signal from drift of multiplied holes into the substrate and AC-coupled through dielectric
- Electrons collect at the resistive n+ and then slowly flow to an ohmic contact at the edge

Diagram credit: CNM


R&D examples

Capabilities enabled by **3D hybrid bonding** provide small pixels with low capacitance

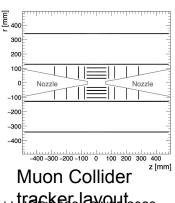
- 3D integration of sensors and electronics provide low C_L, dense interconnects and processing
- Enables 4D tracking detectors + directionality (X,Y,Z,T,θ)

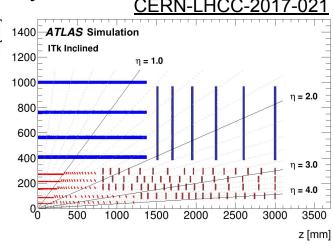
If the signal/noise is high enough we can use fast induced currents instead of collected charge

- Use the current pulse shape to characterize charge deposit, track angle
- Fast timing, radiation hard, precise, angle resolution

Power and space

Estimation of power constraints on vertex detector (assume 25 μ m² pixels with four barrel layers and eight endcap disks, conventional scaled CMOS electronics and extrapolations of optical-based data transmission).

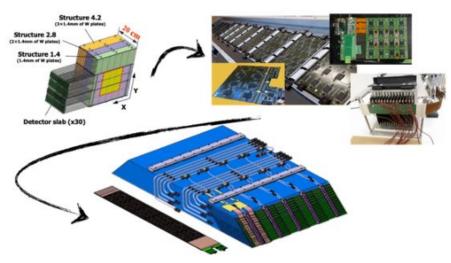

- 450 W for analog bias
- 100 W for sensor bias
- 1.5 kW for data transmission


New technologies might change the picture completely.

 Extrapolation of current LGAD technology to smaller pixel size would require reduction of O(10²) to stay in same budget of ATLAS/CMS timing detectors.

Furthermore, the detector is expected to be very compact.

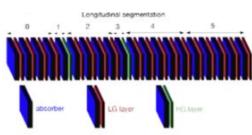
 Need to minimise space required by services



R&D examples: silicon

Main arguments to adopt silicon:

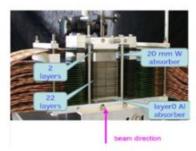
- Fine segmentation
- Robust and stable performance
- High density

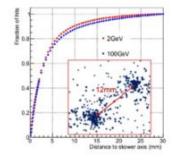


Development by CALICE collaboration

- 1 m² area prototypes
- Scale up to 2500 m² for full detector
- Could adopt CMOS for digital ECAL (10⁴ increase in channel density)

Main challenges:


- Cost
- Operation (calibration, monitoring)



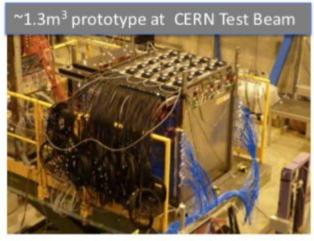
ALICE forward calorimeter

total: 14.5 m² Si pads 1.5 m² CMOS pixels

Full CMOS prototype of a digital ECAL

R&D examples: gas detectors

Resistive Plate Chambers (RPC) and Micro Pattern Gas Detectors (MPGD) are good candidates as active medium for high granularity sampling calorimeters.

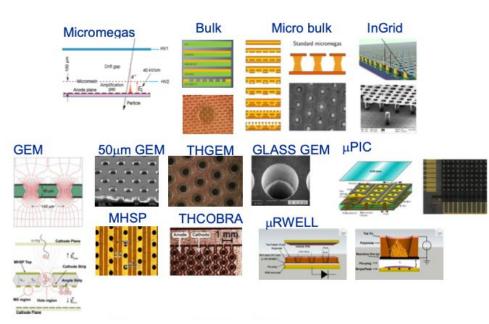

General properties:

- robustness and cost
- can cover large areas
- 50-100 μm space resolution
- are radiaton hard
- can cope with relatively high rates
- good time resoluton

R&D and engineering challenges

- uniformity on large areas
- limits on sizes (dead areas)
- gas homogeneity and time stability
- low sampling fraction

SDHCAL with GRPC



Alternative Micromegas boards

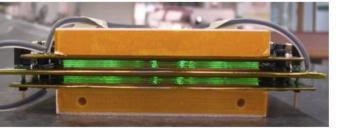
Micromegas prototype of 1x1m2 consisting

Ongoing efforts

Impressive amount of R&D (and pace of development) for MPGDs.

- Still young detectors ~ 10 years
- Most mature technologies being used in LHC phase 2 upgrades

Main challenge:

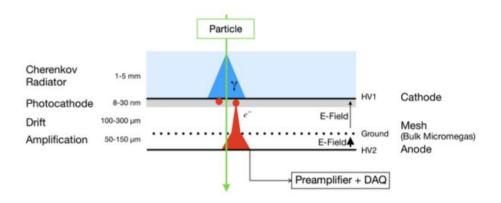

 Engineering and realization of large area detectors

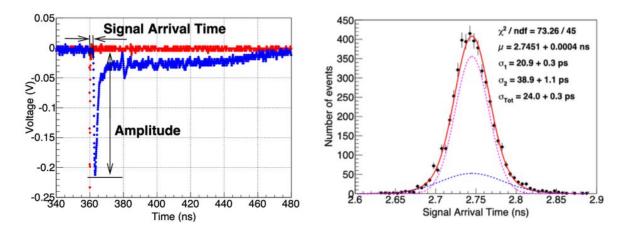
Multi-gap RPC are a proven option to operate in large particle fluxes.

• 20 ps time resolution achievable

Main challenge:

 current gas mixture which has a high Global Warming Potential


ALICE-TOF MRPC

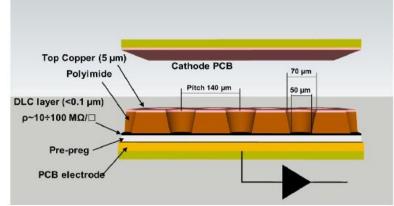

R&D examples: PICOSEC

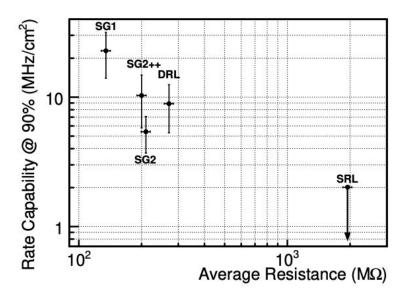
Detect charged particles through **UV Cherenkov photons**.

Absorbed at the photocathode and partially convert into electrons.

Electrons are then amplified in two high-field drift stages and induce a signal which is measured between the anode and the mesh.

R&D examples: µ-RWELL


Detector composed of two elements:


- µ-RWELL_PCB (amplification-stage resistive stage readout PCB)
- drift/cathode PCB defining the gas gap

The "WELL" acts as a multiplication channel for the ionization produced in the gas of the drift gap. Different high-rate layouts.

General characteristics:

- very reliable
- low discharge rate
- adequate for high particle rates
- space resolution < 60 µm
- time resolution < 6 ns

Physics potential

High energy colliders have guaranteed outcomes (SM measurements) but are expensive. Need to prove the ability to make a **great jump** in exploration of **multiple directions**.

The muon collider physics potential is being investigated along three pillars.

Direct search of heavy particles

SUSY-inspired, WIMP, VBF production, 2->1

High rate indirect probes

Higgs single and selfcouplings, rare Higgs decays, exotic decays

High energy probes

difermion, diboson, EFT, Higgs compositeness

Tens of papers submitted to the arXiv in the past few years!