New technologies for colliders Overview of recent progress of plasma based acceleration

Jorge Vieira

GoLP / Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Lisbon, Portugal

epp.tecnico.ulisboa.pt || golp.tecnico.ulisboa.pt

Burton Richter, Nobel prize '76

1000x smaller (Tajima, Dawson PRL '79)

Burton Richter, Nobel prize '76

What is a plasma accelerator?

What is a plasma accelerator?

What is a plasma accelerator?

Roadmap for a plasma based linear collider

Roadmap for a plasma based linear collider

Parameter	Units	CLIC-like (e-/e+)	ILC-like (e-/e+)
bunch charge	pC	833	3200
polarization		80% e-	80% e- / 30% e+
initial energy	GeV	175	235
final energy	GeV	190	250
initial relative energy spread	%	0,6	1
final relative energy spread	%	0,35	0,1
initial bunch length	μm	70	300
final bunch length	μm	70	300
initial normalized emittance H/V	µm / nm	0.890 / 19	9.5 / 25
emittance growth budget H/V	µm/nm	0.010 / 1	0.5/5
final normalized emittance H/V	µm / nm	0.900 / 20	10 / 30
bunch separation	ns	0,5	554
number of bunches per train	7.0	352	1312
rep rate	Hz	50	5
beamline length	m	250	600
Efficiency: wall-plug to drive beam	%	58	- 20
Efficiency: drive beam to main beam	%	22	*
Luminosity	10^34 cm-2 s-1	1,5	1,8

Parameter	Units	CLIC-like (e-/e+)	ILC-like (e-/e+)
bunch charge	pC	833	3200
polarization		80% e-	80% e- / 30% e+
initial energy	GeV	175	235
final energy	GeV	190	250
initial relative energy spread	%	0,6	1
final relative energy spread	%	0,35	0,1
initial bunch length	μm	70	300
final bunch length	μm	70	300
initial normalized emittance H/V	µm / nm	0.890 / 19	9.5 / 25
emittance growth budget H/V	µm/nm	0.010 / 1	0.5/5
final normalized emittance H/V	µm / nm	0.900 / 20	10/30
bunch separation	ns	0,5	554
number of bunches per train	7.0	352	1312
rep rate	Hz	50	5
beamline length	m	250	600
Efficiency: wall-plug to drive beam	%	58	*
Efficiency: drive beam to main beam	%	22	*
Luminosity	10^34 cm-2 s-1	1,5	1,8

Parameter	Units	CLIC-like (e-/e+)	ILC-like (e-/e+)
bunch charge	pC	833	3200
polarization		80% e-	80% e- / 30% e+
initial energy	GeV	175	235
final energy	GeV	190	250
initial relative energy spread	%	0,6	1
final relative energy spread	%	0,35	0,1
initial bunch length	μm	70	300
final bunch length	μm	70	300
initial normalized emittance H/V	µm / nm	0.890 / 19	9.5 / 25
emittance growth budget H/V	µm / nm	0.010 / 1	0.5/5
final normalized emittance H/V	µm / nm	0.900 / 20	10 / 30
bunch separation	ns	0,5	554
number of bunches per train	7.0	352	1312
rep rate	Hz	50	5
beamline length	m	250	600
Efficiency: wall-plug to drive beam	%	58	-
Efficiency: drive beam to main beam	%	22	*
Luminosity	10^34 cm-2 s-1	1,5	1,8

Energy

- √ 15 GeV stages
- ✓ Up to 190 GeV
- ✓ High gradients have been established

Parameter	Units	CLIC-like (e-/e+)	ILC-like (e-/e+)
bunch charge	pC	833	3200
polarization		80% e-	80% e- / 30% e+
initial energy	GeV	175	235
final energy	GeV	190	250
initial relative energy spread	%	0,6	1
final relative energy spread	%	0,35	0,1
initial bunch length	μm	70	300
final bunch length	μm	70	300
initial normalized emittance H/V	µm / nm	0.890 / 19	9.5 / 25
emittance growth budget H/V	µm / nm	0.010 / 1	0.5/5
final normalized emittance H/V	µm / nm	0.900 / 20	10 / 30
bunch separation	ns	0,5	554
number of bunches per train	7.0	352	1312
rep rate	Hz	50	5
beamline length	m	250	600
Efficiency: wall-plug to drive beam	%	58	-
Efficiency: drive beam to main beam	%	22	**
Luminosity	10^34 cm-2 s-1	1,5	1,8

Energy

- ✓ 15 GeV stages
- ✓ Up to 190 GeV
- ✓ High gradients have been established

Energy spread

- ✓ Recent results show we are on track
- ✓ Recent experiments demonstrated $\Delta E/E \lesssim 0.01$

Parameter	Units	CLIC-like (e-/e+)	ILC-like (e-/e+)
bunch charge	pC	833	3200
polarization		80% e-	80% e- / 30% e+
initial energy	GeV	175	235
final energy	GeV	190	250
initial relative energy spread	%	0,6	1
final relative energy spread	%	0,35	0,1
initial bunch length	μm	70	300
final bunch length	μm	70	300
initial normalized emittance H/V	µm / nm	0.890 / 19	9.5 / 25
emittance growth budget H/V	µm / nm	0.010 / 1	0.5/5
final normalized emittance H/V	µm / nm	0.900 / 20	10 / 30
bunch separation	ns	0,5	554
number of bunches per train	7.0	352	1312
rep rate	Hz	50	5
beamline length	m	250	600
Efficiency: wall-plug to drive beam	%	58	
Efficiency: drive beam to main beam	%	22	*
Luminosity	10^34 cm-2 s-1	1,5	1,8

Energy

- √ I5 GeV stages
- ✓ Up to 190 GeV
- ✓ High gradients have been established

Energy spread

- ✓ Recent results show we are on track
- ✓ Recent experiments demonstrated $\Delta E/E \lesssim 0.01$

Open questions

- * Average power ($\simeq 100 \text{ MW}$)*
- * Emittance ($\simeq 10 \text{ nm}$) and emittance growth
- * Positrons

Parameter	Units	CLIC-like (e-/e+)	ILC-like (e-/e+)
bunch charge	pC	833	3200
polarization		80% e-	80% e- / 30% e+
initial energy	GeV	175	235
final energy	GeV	190	250
initial relative energy spread	%	0,6	1
final relative energy spread	%	0,35	0,1
initial bunch length	μm	70	300
final bunch length	μm	70	300
initial normalized emittance H/V	µm / nm	0.890 / 19	9.5 / 25
emittance growth budget H/V	µm / nm	0.010 / 1	0.5/5
final normalized emittance H/V	µm / nm	0.900 / 20	10 / 30
bunch separation	ns	0,5	554
number of bunches per train	7.0	352	1312
rep rate	Hz	50	5
beamline length	m	250	600
Efficiency: wall-plug to drive beam	%	58	-
Efficiency: drive beam to main beam	%	22	**
Luminosity	10^34 cm-2 s-1	1,5	1,8

Energy

- √ I5 GeV stages
- ✓ Up to 190 GeV
- ✓ High gradients have been established

Energy spread

- ✓ Recent results show we are on track
- ✓ Recent experiments demonstrated $\Delta E/E \lesssim 0.01$

Open questions

- * Average power ($\simeq 100 \text{ MW}$)*
- * Emittance ($\simeq 10$ nm) and emittance growth
- * Positrons bas

A hybrid, asymmetric, linear Higgs factory based on plasma-wakefield and radio-frequency acceleration

B. Foster,^{1,*} R. D'Arcy,² and C. A. Lindstrøm³

¹John Adams Institute for Accelerator Science at University of Oxford, Oxford, UK

²Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany

³Department of Physics, University of Oslo, Oslo, Norway

(Dated: March 28, 2023)

AWAKE experiment

AWAKE experiment

Electron acceleration at the AWAKE experiment

Acceleration of unstable particles

C. Badiali et al. in preparation (2023)

Acceleration of unstable particles

C. Badiali et al. in preparation (2023)

Acceleration of unstable particles

C. Badiali et al. in preparation (2023)

Conclusions

Open PhD position!

Email jorge.vieira@tecnico.ulisboa.pt

Strong recent progress in plasma based accelerators research

Sub-% energy spread, mm-mrad normalized emittance, good for XUV/soft x-ray FEL

Challenges

Emittance preservation in staging, tolerances, power dissipation

New perspectives for HEP

Use extremely high electric fields to accelerate unstable particles

Thank you!