

Future timing detectors in LHCb and Beyond

Matteo Bartolini* (University of Cambridge)

*On behalf of the LHCb Collaboration

LHCP 2023

Belgrade, 22-26 May 2023

The LHCb detector (Run3)

- lacktriangle Single arm forward spectrometer 2 $< \eta <$ 5
 - excellent vertex resolution
 - tracking stations before and after 4Tm dipole magnet
 - particle identification with two ring-imaging Cherenkov detectors, calorimeters and muon detectors
- ullet Full software trigger at 40 MHz o GPU-based HLT1 & CPU-based HLT2
- $\mathcal{L} = 2 \times 10^{33} cm^{-2} s^{-1}$
- lacktriangle We aim to collect up to 50 fb $^{-1}$ by the end of Run4

The Upgrade II physics program • LHCB-TDR-023

- Accumulate data to a minimum of 300 fb⁻¹, sensitivity generally limited to statistics
- Ambitious physics program with many observables to be measured with a precision unattainable at competing experiments
- Operate at $\mathcal{L}{=}2{\times}10^{34}~\text{cm}^{-2}\text{s}^{-1}$

The Upgrade II detector

- Factor 7.5 increase in particle multiplicity and rate wrt to Upgrade I
 - 42 expected interactions per crossing.

- The current arrangement of subsystems will be maintained, but
 - The inner part of the SciFi will be made of silicon (Mighty tracker)
 - Installation of a new time of flight detector (TORCH)
 - No more hadron calorimeter.
 - Addition of timing information to cope with increased detector occupancy

Tracking in LHCb

- Trajectories reconstructed by matching track stubs up and down-stream of magnet
- VELO, UT (1 station) and SciFI (3 stations)
- Momentum resolution dominated by multiple scattering
- Tracking efficiency and ghosts rate depend on detector occupancy

The Upgrade I VELO • LHCB-TDR-013

- Designed to work at $\mu = 5.5$ for the Upgrade I
- 40 M of pixels:
 - 200 μ m thickness, 55 μ m pitch
- Reconstructs tracks and PVs in real time
- Association of heavy flavour decays to correct primary vertex crucial for the physics program (ex $B_s^0 \bar{B}_s^0$ oscillation)

 ▶ arXiv:2104.04421

4D tracking with the Upgrade II VELO LHCB-TDR-023

- ullet The precision and the efficiency of the Upgrade I detector must be maintained at $\mu=42$
- Fluence expected to reach 6×10^{35} 1 MeV n_{eq}/cm^2 at 5.1 mm inner radius
- lacktriangle Addition of timing to reduce pile-up ightarrow single hit time resolution of 50 ps required

• The addition of timing allows to recover the Upgrade I performances

Sensor technologies and ASIC for the Upgrade II VELO

- Rad-hard technologies up to 10¹⁶
 1MeV n_{eq}/cm²:
 - Planar sensorsJINST 16 07, P07035
 - 3D sensorsNucl.Instrum.Meth.A 981 164491
 - LGAD sensors

 → J.Phys.Conf.Ser 2374, 012175
 - SiEM sensors
 Nucl.Instrum.Meth.A 1041, 167325

- TimePix4 ASIC → JINST 17 C01044
 - 65 nm technology
 - 58 ps TDC binning
- Test beam with TimePix4 + planar sensors with pixel pitch of 55 × 55
 um
 JINST 17 07, P07006

The Upgrade I SciFi and UT • LHCB-TDR-015

- 3 stations of 4 detection planes
- each plane made of 6 layers of 2.5m fiber arrays
- readout by multichannel SiPMs
- $\qquad \qquad \textbf{Spacial resolution} < 100 \mu \text{m}$

- 4 detection planes
- two planes with vertical strips, two rotated by $\pm 5^{\circ}$
- Silicon strips with ${\sim}200~\mu\mathrm{m}$ pitch and 100 mm length

Mighty tracker for the Upgrade II phase • LHCB-TDR-023

- Significant fibre radiation damage in inner region
- SciFi must be replaced near beam pipe to maintain the same (or better) tracking performance
- UT strip sensors not suitable for Upgrade II, need to change to pixels
- High-Voltage Monolithic Active Pixel Sensors (HV-MAPS) technology for SciFi and UT

 Integrated readout electronics and sensor in a CMOS process

Requirements:

• Pixel size: $100 \times 300 \ \mu \text{m}^2$

• Time resolution: 3 ns

• Sensor thickness: 150 μm

The Upgrade I RICH • LHCB-TDR-014

- Physics programme at LHCb relies on good PID
- The 2 RICHes provide the PID of charged hadrons in final state: π , K e p

- 2 detector provide PID in the momentum range 10-100 GeV/c
- MaPMTs as photodetector with pixel size of 3×3 mm²

- the RICH requires tracking information for the reconstruction
- To maintain current performances the occupancy in the photo-detector plane must be below 30%

The Upgrade II RICH • LHCB-TDR-023

• Need to add timing information to the Cherenkov photons

- Need photodetectors with smaller pixel size $\sim 1 \text{mm}^2$
- Need time resolution better than 100 ps
- R&D ongoing with SiPMs/MaPMTs/LAPPD
 Incom LAPPD
 FBK SiPM

- Sensor coupled directly to an ASIC(FastIC+picoTDC) without the use of FPGA FastIC Collaboaration
- Data are sent to PCle40++ back-end via optical links

Timing information in the RICH ◆ Doi:10.17863/CAM.45822

- Time distribution of photon hits within 25 ns shows clear Cherenkov peak signal
- ${\color{red} \bullet} \ \ \, \text{Apply nanosecond front-end} \\ \ \ \, \text{hardware time gate of} \sim \text{4ns} \\ \ \ \, \\$
 - Assign timestamp to each detected photon

- Current PID performance will be maintained if $\sigma_t < 100 \text{ ps}$
- Assumes precise knowledge of PV time for reconstruction→ Info provided by the VELO

TORCH • NIM A 639 (1) (2011) 173

- Physics programme at LHCb relies on good PID
- \bullet At low momentum ($<10~\mbox{GeV/c})$ both kaons and protons are below the RICH threshold
- ullet Add large area detector before RICH2 to measure TOF (\sim 10 m from interaction point)

TORCH principle

- Exploits Cherenkov light in quartz bar
- Need 15 ps/track \rightarrow 70 ps single photon time resolution
- Requires knowledge of PV time for the reconstruction→ provided by the VELO

- MCP-PMT designed by Photek UK used as photodetector
- Sensor is coupled to NINO and HPTDC chips developed by ALICE for TOF
- Investigate the use of FastIC and PicoTDC like the RICH
- Test beams show σ_t is approaching 70 ps/photon arXiv:2111.04627

The Upgrade | ECAL • LHCB-TDR-014

- ECAL is crucial for wide range of flavour-physics goals
 - \bullet Provides precise measurement for e^\pm , γ and PID
- $\bullet~$ Must be able to sustain radiation dose up 6×10^{15} for 1MeV n_{eq}/cm^2 during Upgrade II
- WLS in the current shashlik are not rad-hard
- Need to introduce fast timing resolution (few tens of ps) for pile up mitigation

The SPACAL prototype for the Upgrade II phase • LHCB-TDR-023

- Rad hard crystal fibers scintillate and transport light
 - \bullet coupled to optical fibers to create a cell size of 1.5 \times 1.5 cm 2 readout by PMTs/SiPMs
- YAG and GAGG crystals studied
 Nucl. Instrum. Meth. A 1000 (2021), 165231
- Asymmetrical separation to enhance shower seperation

ECAL readout

- waveform sampling at several giga-samples per second
- The digital time and energy measurements will be processed by FPGAs

 First test beam results reveal impressive timing capabilities and the required energy resolution
 Nucl. Instrum. Meth. A 999 (2021), 165169

Conclusions

- The upgrade II will allow LHCb to acquire an unprecedented amount of statistics
- The high luminosity condition leads to a challenging increase in track and photon multiplicity in the detector.
- In order to mitigate this effect, LHCb will transform into a 4D detector:
 - Improving the granularity and time resolution of the sensors.
 - Transitioning to robust, integrated, low-power technologies.
 - Introducing better modularity to address the non-uniform occupancies.
- Lots of R&Ds are ongoing for detector designs and next-generation technologies.
- The picosecond time information will add a new dimension to the experiment and increase synergy between the sub-detectors to improve resolutions and to share technologies.