
Real-time Machine Learning  
on FPGAs at the LHC

Thea K. Årrestad (ETH Zürich) 
thea.aarrestad@cern.ch  
@thea_kaa  

LHCP 2023

mailto:thea.aarrestad@cern.ch


Open AI (2023) 

Example of GPT-4 visual input:
User What is funny about this image? Describe it panel by panel.

Source: https://www.reddit.com/r/hmmm/comments/ubab5v/hmmm/

GPT-4 The image shows a package for a "Lightning Cable" adapter with three panels.

Panel 1: A smartphone with a VGA connector (a large, blue, 15-pin con-
nector typically used for computer monitors) plugged into its charging port.

Panel 2: The package for the "Lightning Cable" adapter with a picture of
a VGA connector on it.

Panel 3: A close-up of the VGA connector with a small Lightning con-
nector (used for charging iPhones and other Apple devices) at the end.

The humor in this image comes from the absurdity of plugging a large,
outdated VGA connector into a small, modern smartphone charging port.

Table 3. Example prompt demonstrating GPT-4’s visual input capability. The prompt consists of a
question about an image with multiple panels which GPT-4 is able to answer.

4.1 Visual Inputs

GPT-4 accepts prompts consisting of both images and text, which—parallel to the text-only set-
ting—lets the user specify any vision or language task. Specifically, the model generates text outputs
given inputs consisting of arbitrarily interlaced text and images. Over a range of domains—including
documents with text and photographs, diagrams, or screenshots—GPT-4 exhibits similar capabilities
as it does on text-only inputs. An example of GPT-4’s visual input can be found in Table 3. The stan-
dard test-time techniques developed for language models (e.g. few-shot prompting, chain-of-thought,
etc) are similarly effective when using both images and text - see Appendix G for examples.

Preliminary results on a narrow set of academic vision benchmarks can be found in the GPT-4 blog
post [59]. We plan to release more information about GPT-4’s visual capabilities in follow-up work.
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https://cdn.openai.com/papers/gpt-4.pdf


Open AI (2023) 

GPT-4 visual input example, Chart Reasoning:

User What is the sum of average daily meat consumption for Georgia and Western Asia?
Provide a step-by-step reasoning before providing your answer.

GPT-4 To find the sum of average daily meat consumption for Georgia and Western Asia,
we will follow these steps:

1. Identify the average daily meat consumption for Georgia.
2. Identify the average daily meat consumption for Western Asia.
3. Add the values from steps 1 and 2.

Step 1: From the provided chart, we see that the average daily meat con-
sumption for Georgia is 79.84 grams per person per day.
Step 2: From the chart, we see that the average daily meat consumption for
Western Asia is 69.62 grams per person per day.
Step 3: Add the values from steps 1 and 2.
79.84 g (Georgia) + 69.62 g (Western Asia) = 149.46 g

So, the sum of average daily meat consumption for Georgia and Western
Asia is 149.46 grams per person per day.

Table 14. Example prompt demonstrating GPT-4’s visual input capability. The prompt consists of a
question which requires reading information from a chart and performing computation.
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5th ML Workshop, 2022/05/13, Sitian Qian (PKU) 8

• JetClass is inclusive: 
• 10 types of jets 
• Kinematics, 
• PID, 
• trajectory displacement 

• JetClass is large:
• 100M jets for training à 10M each class
• 5M for validation
• 20M for test à 2M each class

H ! 4qH ! bb̄ H ! cc̄ H ! gg H ! `⌫qq
0

q/gt ! b`⌫t ! bqq0 W ! qq0 Z ! qq̄

"Particle Transformer For Jet Tagging" H. Qu, C. Li, S. Qian  

100 million jets for training

https://arxiv.org/abs/2202.03772


?

(0.16% of neurons in your brain) (All the neurons in your brain?)



NVIDIA Press Release 2020 

Train (GPT-3):  
• 285,000 CPU cores 
• 10,000 GPUs  
• 400 Gb/s network 
• Several weeks 
• Trained on ~25 km high book of text

https://developer.nvidia.com/blog/openai-presents-gpt-3-a-175-billion-parameters-language-model/


NVIDIA Press Release 2020 

Train (GPT-3):  
• 285,000 CPU cores 
• 10,000 GPUs  
• 400 Gb/s network 
• Several weeks 
• Trained on ~25 km high book of text

Inference (GPT-3):  
• ?

https://developer.nvidia.com/blog/openai-presents-gpt-3-a-175-billion-parameters-language-model/


AI & Memory Wall

x11 of these to fit one GPT-3 at inference time! 
Price each: $10,000

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8


Max atency 10 seconds

Resources: 11 interconnected GPUs 
Latency :    101 seconds



Max atency 10 seconds

Resources: One single chip 
Latency:      10-9 seconds

Resources: 11 interconnected GPUs 
Latency :    101 seconds



https://a3d3.ai/ 

https://a3d3.ai/
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On-detec tor  ML

 
~1 billion collisions per second 

~1 PB of data per second 
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On-detec tor  ML

~1 billion collisions per second 
~1 PB of data per second
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On-detec tor  ML

To read out, would need: 
- huge computer farms (and big money!) 

 
but also:  

– must get all data out from detector  
–  must supply detector with much power 

 – resolution degradation due to amount of material in detector

See more in M. Fontana's talk 

https://indico.cern.ch/event/1198609/timetable/?view=standard#266-online-reconstruction-and
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On-detec tor  ML

Francois.vasey@cern.ch

Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the 
detector, feed processing 
electronics situated in shielded 
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

Data temporarily stored  
in detector electronics for ~4 µs L1 trigger: 

Decide which 
event to keep 
within ~4 µs

2 Tb/s to L1
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On-detec tor  ML TIER 0: ∞

High Level Trigger:  
Latency 0(100) ms

DATA 
100(110) kHz 

~Tb/s

DATA 
1 kHz 
~Gb/s

Francois.vasey@cern.ch

Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the 
detector, feed processing 
electronics situated in shielded 
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

~0.0025% of collision events remaining
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On-detec tor  ML

FIRMWARE

TIER 0: ∞

SOFTWARE

HARDWARE

ASIC

FPGA

GPU/CPU 
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High Luminos i ty  LHC

The HL-LHC will come online around 2026.  
More collisions and more complex data.

ATLAS and CMS had to cope with monster pile-up  

With L=1.5 x 1034 cm-2 s-1 and 8b4e bunch structure à pile-up of ~ 60 events/x-ing  
(note: ATLAS and CMS designed for ~ 20 events/x-ing)  

CMS: event with 78 reconstructed vertices 

CMS: event from 2017 with 78
reconstructed vertices

ATLAS: simulation for HL-LHC with 
200 vertices

Maria Girone
CERN openlabCTO

78 vertices 
(average 60)

The HL-LHC will come online around 2026.  
More collisions and more complex data.

ATLAS and CMS had to cope with monster pile-up  

With L=1.5 x 1034 cm-2 s-1 and 8b4e bunch structure à pile-up of ~ 60 events/x-ing  
(note: ATLAS and CMS designed for ~ 20 events/x-ing)  

CMS: event with 78 reconstructed vertices 

CMS: event from 2017 with 78
reconstructed vertices

ATLAS: simulation for HL-LHC with 
200 vertices

Maria Girone
CERN openlabCTO

200 vertices  
(average 140)

LHC

2022 2023 2024 2025 2026 2027 2028 2029 … 2037 2038
LHC MAJOR UPGRADE HL-LHC

Run 3 Run 4+5

6 cm



To cope with increased  
data complexity, new at L1: 

• Tracking 
• Particle Flow 
• O(1)M channel HGCal 

Input data 
• 2 Tb/s → 63 Tb/s 

Latency 
• 4 µs → 12 µs 

 
 
 
 
 

HL-LHC:  CMS L1

266 Chapter 5. Conceptual design of the Phase-2 L1 Trigger

a global processing step which merges or sums the regional outputs. Given the rather simple
calorimeter-only object reconstruction algorithms and the available processing power to per-
form them, the performance achieved is not directly impacted by this choice. For example,
the GCT design remains completely convertible to a fully time-multiplexed approach where
all the data from barrel and endcap can be processed by the same board while offering a more
adaptive interface to the track finder, should future requirement changes result in preferring
it. In the case of the GMT, the choice to align the TMUX period with that of the track finder is
motivated by the main processing task of this system: correlate tracks and muon information.
The firmware resource estimations indicate that lighter hardware is required (See Section 5.3).

Figure 5.12: Diagram of the CMS L1 Phase-2 trigger design. The calorimeter trigger is repre-
sented on the left and composed of a barrel calorimeter trigger (BCT) and a global calorimeter
trigger (GCT). The track finder in the center transmits tracking information to the correlator
trigger (CT), the global track trigger (GTT), and the global muon trigger (GMT). The muon trig-
ger architecture is represented on the right and composed of three muon track finders: EMTF,
OMTF, and BMTF. The CT in the center is composed of 2 layers for particle-flow processing.
The global trigger (GT) receives all trigger information for the final decision. For each archi-
tecture component, the information about the time-multiplexing period (TMUX), the regional
segmentation (RS) in h or f, the functional segmentation (FS), and the number of FPGAs are
specified.

Figure 5.12 displays the baseline architecture chosen for the Phase-2 Level-1 trigger system.
This diagram represents all the components of the foreseen system and their interconnections.
The number of processing boards, f or h segmentation (x axis), and TMUX period (y axis)
are represented. The architecture modeled relies on the use of generic processing boards to
equip each of the subsystems. The trigger components directly interfacing with sub-detectors
are subject to constraints on the number of links and assignment of data fibers. At the time
of this writing, most of the sub-detector backend electronics designs have been finalized and
the trigger primitive formats specified. In some cases, the format was directly optimized to
achieve the best algorithm performance or to optimize the resources on the receiving end. For
some sub-detector interfaces, a baseline format was assumed and it was verified that reasonable

CALORIMETRY: 
370 FPGAs MUONS: 

96 FPGAs

TRACKING 
174 FPGAs

12.5 µs

Trigger 
accept/reject

5 µs

PARTICLE 
FLOW: 

66 FPGAs 

GLOBAL 
TRIGGER: 
24 FPGAs 

*54 for HGCAL only!

63 Tb/s
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On-detec tor  ML
 
 
 
 
 
 
 
 
 
 
 
To make sure we select “the right” 0.0025%, algorithms must be 

• Fast (get more data through) 
• Accurate (select the right data) 



Level-1 trigger:  
Latency O(1) µs Detector: 

40 MHz 
~Pb/s

Fast inference on specialised hardware

FPGA inferenceASIC inference

EDGE INFERENCE



Programming an  FPGA

Vivado 
HLS

Intel 
HLS

Catapult 
HLS

Vivado 
Accelerator

Vitis 
HLS

Xilinx Intel Mentor

C/C++  
algorithm

Constraints/ 
Directives

VHDL/Verilog

Firmware block

(CMS, ATLAS) (LHCb,  
ATLAS?)

(ASICs)



Vivado 
HLS

Intel 
HLS

Catapult 
HLS

Vivado 
Accelerator

Vitis 
HLS

Xilinx Intel Mentor

C/C++  
algorithm

Constraints/ 
Directives

VHDL/Verilog

Firmware block

Efficient L1T firmware design requires expertise 
• FPGA deployment in busy devices 
• ≪ 1µs latency target 

 
Translating NNs into efficient firmware blocks 

• Not well served by industry tools!

Programming an  FPGA



Blabla 
• Dodge 
• Dodge 

Blabla 
• Dodge 
• Dodge 

 
 
 
 
 
 
 

TensorFlow / TF Keras / PyTorch / ONNX

scikit-learn / XGBoost / TMVA 
 

  
HLS project: 

Xilinx Vivado HLS, Intel Quartus HLS,  
Mentor Catapult HLS

pip install hls4ml 

pip install conifer

 Vitis 



Model 
(quantized/pruned)

Quantized:

Q

Q ERAS



Model 
(quantized/pruned)

 
 
 
 
 
 

Convert model to internal 
representation 

Write HLS project targeting 
specified backend 

(configurable parallelization/
quantization) 

 
Run emulation  

Run synthesis

Catapult 
(soon!)

Quantized:

Q

Q ERAS



Model 
(quantized/pruned)

 
 
 
 
 
 

Convert model to internal 
representation 

Write HLS project targeting 
specified backend 

(configurable parallelization/
quantization) 

 
Run emulation  

Run synthesis

Catapult 
(soon!)

Co-processing kernel  
(Xilinx accelerators/SoCs) 

FPGA custom designs 
 (eg trigger algorithms) 

ASICs 

Quantized:

Q

Q ERAS



hls4ml: 

Very broad frontend (ML library) and  
backend (HLS compiler) to cover  
most use cases 

Should be a library all LHC 
experiments can use! 
 



Conv2D

Conv2D

ReLU

MaxPool2D

ReLU

MaxPool2D

Flatten

Dense

Softmax

Prediction

pynq-z2 floorplan

from hls4ml import … 
import tensorflow as tf 

# train or load a model 
model = … # e.g. tf.keras.models.load_model(…) 

# make a config template 
cfg = config_from_keras_model(model, 
granularity=‘name’) 

# tune the config 
cfg[‘LayerName’][‘layer2’][‘ReuseFactor’] = 4 

# do the conversion 
hmodel = convert_from_keras_model(model, cfg) 

# write and compile the HLS 
hmodel.compile() 

# run bit accurate emulation 
y_tf = model.predict(x) 
y_hls = hmodel.predict(x) 

# do some validation 
np.testing.assert_allclose(y_tf, y_hls) 

# run HLS synthesis 
hmodel.build()

 (from Sioni S Summers)

Fully on-chip

https://arxiv.org/abs/1804.06913
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On-detec tor  ML
 
 
 
 
 
 
 

Idea l ly Real i t y



Edge in ference

Before deploying any DNN on the edge, must make it efficient! 

During training 
• Quantization: do you really need 32-bit FP precision? 
• Pruning: removal insignificant synapses  
• (Knowledge distillation: train large network, deploy small) 

Post-training 
• Parallelise:  

all computation that can be done in parallel, do in parallel! 



Quant iza t ion

Weights  Layer  1 Weights  Layer  2

FP 32 FP 32

Float ing  po in t  32



Quant iza t ion

Weights  Layer  1 Weights  Layer  2

4-b i t 4-b i t

F ixed  po in t



Quant iza t ion

Weights  Layer  1 Weights  Layer  2

4-b i t 4-b i t

F ixed  po in t

hls4ml tutorial – 4th IML Workshop19th October 2020

Efficient NN design: quantization
• In the FPGA we use fixed point representation

- Operations are integer ops, but we can represent 
fractional values

• But we have to make sure we’ve used the correct data types!

0101.1011101010
width

fractionalinteger

Full performance 
at 6 integer bits

Scan integer bits
Fractional bits fixed to 8

Scan fractional bits
Integer bits fixed to 6

Full performance 
at 8 fractional bits
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ReLU ReLU ReLU Softmax

Forward  pass  →

←  Back  propagat ion

Quant iza t ion-aware  t ra in ing

Nature Machine Intelligence 3 (2021)

+

https://www.nature.com/articles/s42256-021-00356-5


AutoQ Bayesian optimization 
• Simultaneously scan quantizers 

and architecture   
(often less/more filters/neurons 
needed when quantizing)

As optimization progresses, 
best model accuracy/size  
trade-off is found!

DOI 10.1088/2632-2153/ac0ea1 

Automat ic  quant iza t ion

https://iopscience.iop.org/article/10.1088/2632-2153/ac0ea1


FPGA per formance

Nature Machine Intelligence 3 (2021)

QAT

6 bits

https://www.nature.com/articles/s42256-021-00356-5


https://arxiv.org/abs/2210.05189

https://arxiv.org/abs/1804.06913


  

qDNN

BDT

https://arxiv.org/abs/1804.06913


Run 3: Explore ML-based triggering algorithms 
to improve physics quality of our last LHC data 

• First hl4ml models running in CMS for Run 3! 
• Better reconstruction of displaced muons: 

DNN for displaced muon pT assignment and PU discriminant 

Also a chance to do something new…. 
 
 
 
 
 
 
 

Making  the  most  out  o f  Run 3
Deep Learning at L-1, S. Jindariani and N. Tran 

https://indico.fnal.gov/event/24333/contributions/76216/attachments/128045/154774/SJNT_Snomass_PreMeeting.pdf


Searches for new particles at LHC
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ARE WE LOOKING IN THE WRONG WAY?



Limi ta t ions  o f  current  t r igger

CERN Summer student 2012

Energy (GeV)Trigger threshold

New 
Physics?

- - LOST DATA 
- - SELECTED DATA 
- - POSSIBLE NP SIGNAL

Level-1  re jec ts  >98%  o f  events !  
Is  there  a  smarter  way  to  se lec t?



CERN Summer student 2012

Energy (GeV)Trigger threshold

NP?

- - LOST DATA 
- - SELECTED DATA 
- - POSSIBLE NP SIGNAL

Look at data rather than defining signal hypothesis a priori 
• Can we “classify” objects/events? 

 

 
 
 
 
 
 
 
 
 
 

anomalous data
noise 

normal data 



VAE: Learn from data 

ML for  anomaly  detec t ion

CERN Summer student 2012

256 A Lorentz invariance based Deep Neural Network for W-tagging

When performing the following multiplication

x
C
µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
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In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.
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In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.
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When performing the following multiplication

x
C
µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
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In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.
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When performing the following multiplication
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the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
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In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.
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constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first
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in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
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In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.
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first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
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In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.
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first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
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In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.
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When performing the following multiplication

x
C
µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
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In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.
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the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
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In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.
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first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
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In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.
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in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the
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In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.
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Reconstruction error
AD threshold
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- - LOST DATA 
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Everything here 
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See also Wednesday talk on offline AD in ATLAS by Rui
Nature Machine Intelligence 4, 154 (2022)
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266 Chapter 5. Conceptual design of the Phase-2 L1 Trigger

a global processing step which merges or sums the regional outputs. Given the rather simple
calorimeter-only object reconstruction algorithms and the available processing power to per-
form them, the performance achieved is not directly impacted by this choice. For example,
the GCT design remains completely convertible to a fully time-multiplexed approach where
all the data from barrel and endcap can be processed by the same board while offering a more
adaptive interface to the track finder, should future requirement changes result in preferring
it. In the case of the GMT, the choice to align the TMUX period with that of the track finder is
motivated by the main processing task of this system: correlate tracks and muon information.
The firmware resource estimations indicate that lighter hardware is required (See Section 5.3).

Figure 5.12: Diagram of the CMS L1 Phase-2 trigger design. The calorimeter trigger is repre-
sented on the left and composed of a barrel calorimeter trigger (BCT) and a global calorimeter
trigger (GCT). The track finder in the center transmits tracking information to the correlator
trigger (CT), the global track trigger (GTT), and the global muon trigger (GMT). The muon trig-
ger architecture is represented on the right and composed of three muon track finders: EMTF,
OMTF, and BMTF. The CT in the center is composed of 2 layers for particle-flow processing.
The global trigger (GT) receives all trigger information for the final decision. For each archi-
tecture component, the information about the time-multiplexing period (TMUX), the regional
segmentation (RS) in h or f, the functional segmentation (FS), and the number of FPGAs are
specified.

Figure 5.12 displays the baseline architecture chosen for the Phase-2 Level-1 trigger system.
This diagram represents all the components of the foreseen system and their interconnections.
The number of processing boards, f or h segmentation (x axis), and TMUX period (y axis)
are represented. The architecture modeled relies on the use of generic processing boards to
equip each of the subsystems. The trigger components directly interfacing with sub-detectors
are subject to constraints on the number of links and assignment of data fibers. At the time
of this writing, most of the sub-detector backend electronics designs have been finalized and
the trigger primitive formats specified. In some cases, the format was directly optimized to
achieve the best algorithm performance or to optimize the resources on the receiving end. For
some sub-detector interfaces, a baseline format was assumed and it was verified that reasonable

63 Tb/s

HL-LHC:  CMS L1
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In HL-LHC, will need to do track finding at L1 
• O(1000) hits, O(100) tracks, 40 MHz rate, ~5 µs latency 

Graph Neural Networks for fast charged particle tracking 
• Custom converter for PyTorch Geometric integrated in hls4ml 

 
 
 
 
 
 
 

ML for  t rack ing

DOI:10.3389/fdata.2022.828666 

Throughput-optimized for L1 applications, 
resource-optimised for co-processing

https://www.frontiersin.org/articles/10.3389/fdata.2022.828666/full
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ML for  je t  tagg ing

Jet Finding 
b tag NN

b

b

b

b

cds.cern.ch/record/2814728/ 

S.Summers

https://cds.cern.ch/record/2814728/files/DP2022_021.pdf
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More and more dedicated AI processors on the market 
• Can we utilise highly specialised ML hardware at CERN? 

 
 
 
 
 
 
 

AI  eng ines



More and more dedicated AI processors on the market 
• Can we utilise highly specialised ML hardware at CERN? 

Xilinx Versal AI processors 
• 400 AI processors, ~2M logic cells (FPGA),  

2k DSPs, Arm CPU, Arm RPU 
• Data can move back and forth between AI Engines and FPGA 

Explored for real-time tracking in trigger application 
• GNN for pattern recognition 

 
 
 
 
 
 
 

AI  eng ines GNNs with Versal AI, P. Schwaebig 

https://indico.cern.ch/event/1156222/contributions/5062808/attachments/2521174/4335154/slides_fastml_workshop_2022_.pdf


CMS Offline Computing Results 

See Vangelis Kourlitis' talk 

https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults
https://indico.cern.ch/event/1198609/contributions/5370078/attachments/2651396/4590742/Kourlitis%20-%20HL-LHC%20and%20Beyond%20Computing%20Challenges.pdf


FPGAs as  acce lera tors

C. Beteta, I. Bezshyiko, N. Serra

Particle flow 

17 July, 2014 CMS induction ,  T. Camporesi 32 

DAQ CO-PROCESSING



FPGAs as  acce lera tors

FaaST, D. Rankin et. al 

Alternative: FPGA-as-a-Service toolkit for Cloud inference 
• Use hls4ml to deploy large models on FPGA 
→run inference in the cloud 

 
 
 
 
 
 
 

https://inspirehep.net/files/8036b4272f91a91bb357472313ce5933


NA62: Measuring BR( ) = O(10-11) 
• FPGA trigger 800 MHz→1 MHz 

 
 
 
 
 
 
 
 
 

 
 
 
 
 

K+ → π+νν̄

ATLAS Liquid Argon Calorimeter (R&D) 
• RNN for real-time energy reconstruction 
• ~200 ns on Intel Stratix-10 FPGA 

 

hls4ml  in  o ther  CERN exper iments

CHEP 2019, P. Vicini 

DOI:10.1007/s41781-021-00066-y 

ATLAS small wheel muon segment finding 
and reconstruction (R&D) 

• Regression of muon position and angle 
• 400 ns budget 

R. Teixeira de Lima, R Rojas Caballero et al.

https://indico.cern.ch/event/773049/contributions/3474328/attachments/1939688/3216506/L0TP_CHEP2019.pdf
https://link.springer.com/article/10.1007/s41781-021-00066-y


Semantic segmentation for autonomous vehicles 
Seizure Predicting Brain Implant 
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…and outs ide  o f  HEP

N. Ghielmetti et al. 

NN accelerator for quantum control 

D Xu et al. 

Other examples 
• For fusion science phase/mode monitoring  
• Crystal structure detection  
• Triggering in DUNE  
• Accelerator control  
• Magnet Quench Detection 
• MLPerf tinyML benchmarking  
• Food contamination detection  
• etc….  

 

W. Lemaire et al. 

https://iopscience.iop.org/article/10.1088/2632-2153/ac9cb5
https://arxiv.org/abs/2208.02645
https://indico.cern.ch/event/1156222/contributions/5058420/attachments/2535257/4363120/CJH_FML4Science-10_4_22.pdf
https://docs.google.com/presentation/d/1gnAqn4gpZvx4JVVD8dqbXKMsZ_vpguO9hxC7zH0jv6w/edit#slide=id.g13512715b6e_0_5
https://indico.cern.ch/event/1156222/contributions/5062816/attachments/2522993/4338612/fast_ml_2022_gk.pdf
https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.24.104601
https://ieeexplore.ieee.org/document/9354037
https://arxiv.org/abs/2206.11791
https://ieeexplore.ieee.org/document/9181293
https://indico.cern.ch/event/1156222/contributions/5062818/attachments/2521234/4335217/FastML2022.pdf


Join the community: 
 

fastmachinelearning.org 
Sign up to the hls-fml group  

https://fastmachinelearning.org
https://e-groups.cern.ch/e-groups/Egroup.do?egroupId=10279178
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BACKUP
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What  are  FPGAs?

Field Programmable Gate Arrays 
• Different resources with programmable interconnects (reprogrammable) 
• Originally ASIC prototyping, now also for high performance computing 
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What  are  FPGAs?

Field Programmable Gate Arrays 
• Different resources with programmable interconnects (reprogrammable) 
• Originally ASIC prototyping, now also for high performance computing 

Digital signal processors (DSPs): 
specialised for multiplication 

Memory (BRAM) 

Logic cells/lookup tables (LUTs):  
perform arbitrary functions  
 

flip-flops (FF):  
registers data in time with clock pulse 



Why FPGAs a t  LHC?
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High parallelism  = Low latency
• Can work on different data simultaneously (pipelining)! High bandwidth
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(for Phase-2, FPGAs dissipate heat of ~7W/cm2 while processing 5% of total internet traffic!) 



Why FPGAs a t  LHC?

High parallelism  = Low latency
• Can work on different data simultaneously (pipelining)! High bandwidth

Power efficient
• FPGAS ~x10 more power efficient than GPUs 

(for Phase-2, FPGAs dissipate heat of ~7W/cm2 while processing 5% of total internet traffic!) 

Latency deterministic
• CPU/GPU has processing randomness, FPGAs repeatable and predictable latency
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Q                  ?

Brevitas like QKeras, but for PyTorch 
• QAT library 
• Support most common layers and activation functions 

Other quantization techniques: 
• HAWQ: Hessian AWare Quantization 
• Quantization Aware Pruning (B. Hawks et al.) 
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Inception-V3 on ImageNet
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Fig. 1: Top eigenvalue of each individual block of pre-trained ResNet20 on Cifar-10 (Left), and Inception-V3 on ImageNet
(Right). Note that the magnitudes of eigenvalues of different blocks varies by orders of magnitude. See Figure 6 and 7 in
appendix for the 3D loss landscape of other blocks.

to determine which layers to quantize first is factorial in
the number of layers. In this paper, we propose a Hessian
guided approach to address these challenges. In particular, our
contributions are the following.

1) The search space for choosing mixed-precision quanti-
zation is exponential in the number of layers. Thus, we
present a novel, deterministic method for determining the
relative quantization level of layers based on the Hessian
spectrum of each layer.

2) The search space for quantization-aware fine-tuning of the
model is factorial in the number of blocks/layers. Thus, we
propose a Hessian based method to determine fine-tuning
order for different NN blocks.

3) We perform ablation study of HAWQ, and we present
novel quantization results using ResNet20 on Cifar10, as
well as Inception-V3/ResNet50/SqueezeNext on ImageNet.
Comparison with state-of-the-art shows that our method
achieves higher precision (up to 1%), smaller model size
(up to 20%), and smaller activation size (up to 8⇥).

The paper is organized as follows. First, in § II, we
will discuss related works on model compression. This is
followed by describing our method in § III, and our results in
§ IV. Finally, we present ablation study in § V, followed by
conclusions.

II. RELATED WORK

Recently, significant efforts have been spent on developing
new model compression solutions to reduce the parameter size
as well as computational complexity of NNs [4], [8], [11], [28],
[5], [42], [17], [13], [3], [41]. In [9], [22], [20], pruning is
used to reduce the number of non-zero weights in NN models.
This approach is very useful for models that have very large
fully connected layers (such as AlexNet [18] or VGG [33]).

For instance, the first fully-connected layer in VGG-16
occupies 408MB alone, which is 77.3% of total model size.
Large fully-connected layers have been removed in other fully
convolutional networks such as ResNet [10], or Inception
family [34].

Knowledge distillation introduced in [11] is another direction
for compressing NNs. The main idea is to distill information

from a pre-trained, large model into a smaller model. For
instance, it was shown that with knowledge distillation it is
possible to reduce model size by a factor of 3.6 with an
accuracy of 91.61% on Cifar-10 [30].

Another fundamental approach has been to architect models
which are, by design, both small and hardware-efficient.
An initial effort here was SqueezeNet [15] which could
achieve AlexNet level accuracy with 50⇥ smaller footprint
through network design, and additional 10⇥ reduction through
quantization [8], resulting in a NN with 500⇥ smaller memory
footprint. Other notable works here are [13], [31], [41], [21],
[3], where more accurate networks are presented. Another work
here is SqueezeNext [7], where a similar approach is taken,
but with co-design of both hardware architecture along with a
compact NN model.

Quantization [1], [4], [28], [42], [43], [2], [40] is another
orthogonal approach for model compression, where lower bit
representation are used instead of redesigning the NN. One
of the major benefits of quantization is that it increases a
NN’s arithmetic intensity (which is the ratio of FLOPs to
memory accesses). This is particularly helpful for layers that
are memory bound and have low arithmetic intensity. After
quantization, the volume of memory accesses reduces, which
can alleviate/remove the memory bottleneck.

However, directly quantizing NNs to ultra low precision may
cause significant accuracy degradation.

One possibility to address this is to use Mixed-Precision
quantization (MP) [36], [44]. A second possibility, Multi-Stage
Quantization (MSQ), is proposed by [42], [6]. MP and MSQ
can improve the accuracy of quantized NNs, but face an
exponentially large search space. This is a major problem that
has not been addressed in existing literature for quantization.
Applying existing methods require often ad-hoc rules to choose
precision of different layers which are problem/model specific
and do not generalize. The goal of our work here is to address
this challenge using second-order information.

III. METHODOLOGY

Assume that the NN is partitioned into b blocks de-
noted by {B1, B2 . . . , Bb}, with learnable parameters

QAP (B. Hawks et al.) 

 

HAWQ

https://github.com/Xilinx/brevitas

https://github.com/Xilinx/brevitas
https://arxiv.org/abs/2011.10680
https://www.frontiersin.org/articles/10.3389/frai.2021.676564/full
https://www.frontiersin.org/articles/10.3389/frai.2021.676564/full
https://arxiv.org/abs/1905.03696
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Q                  ? Quantized ONNX (QONNX), J. Mitrevski et. al 

Brevitas like QKeras, but for PyTorch 
• QAT library 
• Support most common layers and activation functions 

Other quantization techniques: 
• HAWQ: Hessian AWare Quantization 
• Quantization Aware Pruning (B. Hawks et al.)  

hls4ml collaborate with Xilinx Research Labs to develop QOONX 
• Introducing ‘Quant’ node to ONNX graph 
• Brevitas (PyTorch) and QKeras (Keras) can export QONNX (HAWQ 

export in progress): then hls4ml and FINN can import QONNX 

https://indico.cern.ch/event/1156222/contributions/5062813/attachments/2521120/4335054/QONNX%20FastML.pdf
https://github.com/Xilinx/brevitas
https://arxiv.org/abs/2011.10680
https://www.frontiersin.org/articles/10.3389/frai.2021.676564/full


hls4ml tutorial – 4th IML Workshop19th October 2020

Neural network inference

activation function multiplication addition
precomputed and 
stored in BRAMs DSPs logic cells

L1
Ln

LN

Compress ion

Network size limited by N multiplications! 
• E.g, simple DNN, 4256 multiplications! 
• Typical FPGA at LHC usually has 4-6000 DSPs 
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Datasets: Common FastML Science Benchmarking datasets  
• guide design of edge ML hardware and software for sub-microsecond 

inference! 

Algorithms: hls4ml-FINN benchmarked in MLPerf™ 
• how fast systems can process inputs and produce results 
• demonstrate efficient and low-latency solutions on FPGAs with hls4ml 

and FINN 

Consistently competitive (QKeras+hls4ml, semantic segmentation, MLPerf) 
 
 
 
 
 

Benchmarking

arxiv:2207.07958 

https://mlcommons.org/en/inference-tiny-07/ 

arxiv:2103.05579 

https://arxiv.org/abs/2207.07958v1
https://mlcommons.org/en/inference-tiny-07/
https://arxiv.org/pdf/2103.05579.pdf


ML for  compress ion

CMS High Granularity calorimeter 
• 6.5 million readout channels, 50 layers

On-detec tor  ML

The CMS High Granularity Calorimeter (HGCAL) upgrade for HL-LHC

250 GeV π-

Thorben Quast

CERN
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On-detec tor  MLAI  for  compress ion

The CMS High Granularity Calorimeter (HGCAL) upgrade for HL-LHC

250 GeV π-

Thorben Quast

CERN

Idea: HGCAL will be 3D imaging calorimeter 11

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021
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Idea: HGCAL will be 3D imaging calorimeter with timing capabilities 12

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

VBF H (γγ)

jet

+

Layers projected onto one plane

-no timing cut applied-

Pileup hits
Pileup hits

Pileup hits

Pileup hits
Pileup hits

Layers projected onto one plane

-require hits within 90ps time window-

200 PU

The HL-LHC will come online around 2026.  
More collisions and more complex data.

ATLAS and CMS had to cope with monster pile-up  

With L=1.5 x 1034 cm-2 s-1 and 8b4e bunch structure à pile-up of ~ 60 events/x-ing  
(note: ATLAS and CMS designed for ~ 20 events/x-ing)  

CMS: event with 78 reconstructed vertices 

CMS: event from 2017 with 78
reconstructed vertices

ATLAS: simulation for HL-LHC with 
200 vertices

Maria Girone
CERN openlabCTO

+
200 vertices
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The CMS High Granularity Calorimeter (HGCAL) upgrade for HL-LHC

250 GeV π-
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CERN

Idea: HGCAL will be 3D imaging calorimeter with timing capabilities 12
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The HL-LHC will come online around 2026.  
More collisions and more complex data.

ATLAS and CMS had to cope with monster pile-up  

With L=1.5 x 1034 cm-2 s-1 and 8b4e bunch structure à pile-up of ~ 60 events/x-ing  
(note: ATLAS and CMS designed for ~ 20 events/x-ing)  

CMS: event with 78 reconstructed vertices 

CMS: event from 2017 with 78
reconstructed vertices

ATLAS: simulation for HL-LHC with 
200 vertices

Maria Girone
CERN openlabCTO

+

No t iming  cut 90  ps  t ime window

200 vertices
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The CMS High Granularity Calorimeter (HGCAL) upgrade for HL-LHC

250 GeV π-

Thorben Quast

CERN

Idea: HGCAL will be 3D imaging calorimeter with timing capabilities 12

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021
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Layers projected onto one plane
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Idea: HGCAL will be 3D imaging calorimeter with timing capabilities 12

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

VBF H (γγ)

jet

+

Layers projected onto one plane

-no timing cut applied-

Pileup hits
Pileup hits

Pileup hits

Pileup hits
Pileup hits

Layers projected onto one plane

-require hits within 90ps time window-

200 PU

The HL-LHC will come online around 2026.  
More collisions and more complex data.

ATLAS and CMS had to cope with monster pile-up  

With L=1.5 x 1034 cm-2 s-1 and 8b4e bunch structure à pile-up of ~ 60 events/x-ing  
(note: ATLAS and CMS designed for ~ 20 events/x-ing)  

CMS: event with 78 reconstructed vertices 

CMS: event from 2017 with 78
reconstructed vertices

ATLAS: simulation for HL-LHC with 
200 vertices

Maria Girone
CERN openlabCTO

+

No t iming  cut 90  ps  t ime window

200 vertices

BUT:  Cannot  read  out  a l l  these  channels  
fas t  enough for  L1  to  t r igger !
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On-detec tor  MLAI  for  compress ion

200 vertices

Encoder architecture

4

Must compress ON DETECTOR 
• High radiation 
• Cooled to -30 → low power 
• 1.5 µs latency
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Front-end electronics are challenging 19

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

HGCAL FE electronics requirements: 
• Low noise (<2500e) and high dynamic range 

(0.2fC -10pC).

• Timing information to tens of picoseconds.


• Radiation tolerant. 
• <20mW per channel (cooling limitation).

• Zero-suppression of data to transmit to DAQ.

• Computation of trigger sums for L1 trigger.

V3 HGCROC ASIC both for silicon and SiPMs ECON as concentrator ASIC
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HGCAL FE electronics requirements: 
• Low noise (<2500e) and high dynamic range 

(0.2fC -10pC).

• Timing information to tens of picoseconds.


• Radiation tolerant. 
• <20mW per channel (cooling limitation).

• Zero-suppression of data to transmit to DAQ.

• Computation of trigger sums for L1 trigger.

V3 HGCROC ASIC both for silicon and SiPMs ECON as concentrator ASIC

Time-of-arrival (TOA) & time-over-threshold (TOT)

Si
gn

al

ASIC

ASIC

ASIC

ASIC

To L1

Silicon modules and cassettes 16

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

PCB

Silicon 
Kapton 

Baseplate

8’’ prototype module
Silicon modules 
Sandwich of PCB, sensor, biasing/insulation layer and baseplate for rigidity/cooling.

• Wire-bonding from PCB onto the silicon.

• CE-E: CuW baseplates act as absorbers.

• CE-H: PCB baseplates (good thermal properties and cheaper).

CE-E cassettes 
Self-supporting sandwich structures (with absorbers).

• Modules placed on both sides of Cu cooling plate and closed 

with Pb plates.

O
(1

.5
m

)

Pb absorber
Motherboard

Module PCB
ASICs

Silicon
CuW baseplate

Cu cooling plate
CuW baseplate

All silicon 

cassette

HGCROC
Module partials
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On-detec tor  MLAI  for  compress ion

200 vertices

Encoder architecture

4

Encoded dataEncoded data

ENCODE DECODEBottleneck 
(lower dim.  

space)

Var ia t ional  Autoencoder

Encoder architecture

4

ECON-T, D. Noonan 

https://indico.cern.ch/event/1156222/contributions/5062791/attachments/2521161/4335130/DNoonan_ECON_Autoencoder_FastMLWorkshop_Oct_3_2022.pdf
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On-detec tor  ML

Transmit encoded data!

Encoded data

AI  for  compress ion
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HGCAL FE electronics requirements: 
• Low noise (<2500e) and high dynamic range 

(0.2fC -10pC).

• Timing information to tens of picoseconds.


• Radiation tolerant. 
• <20mW per channel (cooling limitation).

• Zero-suppression of data to transmit to DAQ.

• Computation of trigger sums for L1 trigger.

V3 HGCROC ASIC both for silicon and SiPMs ECON as concentrator ASIC
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https://indico.cern.ch/event/1156222/contributions/5062791/attachments/2521161/4335130/DNoonan_ECON_Autoencoder_FastMLWorkshop_Oct_3_2022.pdf
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Idea: HGCAL will be 3D imaging calorimeter with timing capabilities 12
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On FPGA: 3.5 µs to cluster energy deposits 
• Graph Neural Networks (GarNet/GravNet) for fast clustering of irregular geometry detectors 
• hls4ml support for specific graph networks/layers (GarNet/JEDInet), but is moving to lower-level blocks for more generic 

support (PyTorch Geometric?)
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vʹ5 = f ⃗́ 5(m1→5,…,m6→5)

m1→5 = g(v⃗1,v⃗5)

https://link.springer.com/article/10.1140/epjc/s10052-019-7113-9


Blabla 
• Dodge 
• Dodge 

Blabla 
• Dodge 
• Dodge 

 
 
 
 
 
 
 

ML for  
reconstruc t ion

On FPGA

Encoder architecture

4

Encoded data

On FPGA: 3.5 µs to cluster energy deposits



Blabla 
• Dodge 
• Dodge 

Blabla 
• Dodge 
• Dodge 

 
 
 
 
 
 
 

ML for  
reconstruc t ion

On FPGA

Encoder architecture

4

Encoded data

Idea: HGCAL will be 3D imaging calorimeter with timing capabilities 12

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

VBF H (γγ)

jet

+

Layers projected onto one plane

-no timing cut applied-

Pileup hits
Pileup hits

Pileup hits

Pileup hits
Pileup hits

Layers projected onto one plane

-require hits within 90ps time window-

200 PU

On FPGA: 3.5 µs to cluster energy deposits



Blabla 
• Dodge 
• Dodge 

Blabla 
• Dodge 
• Dodge 

 
 
 
 
 
 
 

ML for  
reconstruc t ion EPJC Vol 79 608 (2019)  

2 charged pions

v1

v2

v3

On FPGA: 3.5 µs to cluster energy deposits 
• Graph Neural Networks (GarNet/GravNet) for fast clustering of irregular geometry detectors 
• hls4ml support for specific graph networks/layers (GarNet/JEDInet), but is moving to lower-level blocks for more generic 

support (PyTorch Geometric?)

v1'

v2'

v3'

vʹ5 = f ⃗́ 5(m1→5,…,m6→5)

m1→5 = g(v⃗1,v⃗5)

https://link.springer.com/article/10.1140/epjc/s10052-019-7113-9

